-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvoynich_base.py
403 lines (356 loc) · 14.1 KB
/
voynich_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import heapq
from collections import defaultdict, Counter
from itertools import combinations, chain
from operator import itemgetter
import math
import os
import datetime
import time
from tqdm import tqdm
import pandas as pd
from parse import *
import statistics
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
def parse_line(line):
# if last == '#':
# if line == '#':
# return '##', '##'
# elif last == '#':
# pass
# parsed = parse("<{},{};{}>{}\t{}", line)
parsed = parse("<{},{}>{}", line)
line_type = 0
if not parsed:
parsed = parse("<{}>{}<! $I={} $Q={} $P={} $L={} $H={} $X={}>{}", line)
line_type = 2
if not parsed:
parsed = parse("<{}>{}<! $I={} $Q={} $P={} $L={} $H={}>{}", line)
line_type = 3
if not parsed:
parsed = parse("<{}>{}<! $I={} $Q={} $P={} $L={}>{}", line)
line_type = 4
if not parsed:
parsed = parse("<{}>{}<! $I={} $Q={} $P={}>{}", line)
line_type = 5
if not parsed:
parsed = parse('#', line)
line_type = 1
if not parsed:
parsed = parse('', line)
line_type = 1
if not parsed:
print(line)
raise AssertionError("Parsing failed")
if line_type in [2, 3, 4, 5]:
parsed = list(parsed) + ([''] * (line_type - 2))
return parsed, line_type
def convert_to_strings(big_text, lines=True, line_count=6000):
if not lines:
with open(big_text) as corpus:
paragraphs = []
try:
line = corpus.readline().rstrip('\n')
line = line.split(" ")
except:
print('Analysis failed 62')
return None
for i in range(line_count):
section = line[i*10:(i*10 + 10)]
tmp = (' ').join(section)
paragraphs.append(tmp)
# paragraphs.append[' '.join(line[i*10:(i*10+10)])]
with open(big_text) as corpus:
paragraphs = []
line = corpus.readline().rstrip('\n').rstrip('.')
cur_paragraph = []
i = 0
while line and i < line_count:
# for i in tqdm(range(line_count)):
# if not line:
# print('noline')
# break
cur_paragraph = cur_paragraph + line.split(' ')
line = corpus.readline()
# try:
# line = corpus.readline()
# except:
# print(line)
# print('Analysis failed 81')
# break
if not line or line == '\n':
paragraphs.append(cur_paragraph)
cur_paragraph = []
if line != '\n':
line = line.rstrip('\n').rstrip('.')
i += 1
return paragraphs
def convert_to_strings_voynich(df):
i = 0
paragraph = ''
output = []
while i < len(df):
line = df.iloc[i, :]
if line['Ending'] == '@P0':
if paragraph:
output.append(paragraph)
paragraph = line['Line']
elif line['Ending'] == '+P0':
paragraph += ('.' + line['Line'])
elif line['Ending'] == '=Pt':
paragraph += ('.' + line['Line'])
else:
output.append(paragraph)
paragraph = ''
# pass
# paragraph += line['Line']
# TODO these are all different
i += 1
for k, paragraph in enumerate(output):
output[k] = paragraph.replace('<->', '.')
output[k] = paragraph.replace('<\\$>', '')
output[k] = paragraph.split('.')
return output
def get_levenshtein(pair):
if not (pair[0].isalpha() and pair[1].isalpha()):
return -1
seq1, seq2 = pair
size_x = len(seq1) + 1
size_y = len(seq2) + 1
matrix = np.zeros((size_x, size_y))
for x in range(size_x):
matrix[x, 0] = x
for y in range(size_y):
matrix[0, y] = y
for x in range(1, size_x):
for y in range(1, size_y):
if seq1[x-1] == seq2[y-1]:
matrix[x, y] = min(
matrix[x-1, y] + 1,
matrix[x-1, y-1],
matrix[x, y-1] + 1
)
else:
matrix[x, y] = min(
matrix[x-1, y] + 1,
matrix[x-1, y-1] + 1,
matrix[x, y-1] + 1
)
# print (matrix)
return (matrix[size_x - 1, size_y - 1])
def create_df(file, hand):
with open(file) as corpus:
# row = 0
parsed_lines = []
line = corpus.readline()
line_def, line_type = parse_line(line)
# row += 1
while line:
line = corpus.readline()
parsed, line_type = parse_line(line)
if line_type == 0:
# print(list(parsed))
# print(line_def)
parsed_lines.append(line_def + list(parsed))
elif line_type in [2, 3, 4, 5]:
line_def = parsed
# elif line_type == 2:
# line_def = parsed
elif line_type == 1:
pass
else:
raise NotImplementedError("This Line Type Not implemented")
# row += 1
column_names = ['Folio', 'Empty1', 'I', 'Q', 'P', 'L', 'H', 'X', 'Empty2',
'Folio', 'Ending', 'Line']
df = pd.DataFrame(parsed_lines, columns=column_names)
df.drop(['Empty1', 'Empty2'], axis=1, inplace=True)
df['Line'] = df['Line'].apply(lambda s: s.lstrip())
df['Line'] = df['Line'].apply(lambda s: s.rstrip())
A_df = df[df['H'] == '1']
B_df = df[df['H'] == '2']
if hand == 'A':
str_list_output = convert_to_strings_voynich(A_df)
if hand == 'B':
str_list_output = convert_to_strings_voynich(B_df)
else:
str_list_output = convert_to_strings_voynich(df)
return str_list_output
def words_weight(word_pair, size_of_corpus, cnt):
frac = math.log(min(size_of_corpus / cnt[word_pair[0]], size_of_corpus / cnt[word_pair[1]]))
return frac
def gen_comps(str_list_output, neg_dist=1, weighted=False):
word_comp = defaultdict(list)
comp_count = defaultdict(lambda: 0)
for paragraph in str_list_output:
i = 0
n = 10
while i < len(paragraph) - n:
window = paragraph[i:i + n]
word1 = window[0]
for k, word_2 in enumerate(window[1:]):
if comp_count[word1, word_2] == 0:
if comp_count[word_2, word1] == 0:
word_comp[word1, word_2].append(k)
comp_count[word1, word_2] += 1
else:
word_comp[word_2, word1].append(neg_dist * k)
comp_count[word_2, word1] += 1
else:
word_comp[word1, word_2].append(k)
comp_count[word1, word_2] += 1
i += 1
for k, word1 in enumerate(paragraph[i:]):
for m, word_2 in enumerate(paragraph[(i+k+1):]):
if comp_count[word1, word_2] == 0:
if comp_count[word_2, word1] == 0:
word_comp[word1, word_2].append(m)
comp_count[word1, word_2] += 1
else:
word_comp[word_2, word1].append(neg_dist * m)
comp_count[word_2, word1] += 1
else:
word_comp[word1, word_2].append(m)
comp_count[word1, word_2] += 1
if weighted==True:
raise NotImplementedError
# l = sum([len(line) for line in str_list_output])
# cnt = Counter(list(chain(*str_list_output)))
# for comp in comp_count.keys():
# comp_count[comp] = comp_count[comp] * words_weight(comp, l, cnt)
return word_comp, comp_count
def analysis(word_comp, comp_count, n=5000):
topitems = heapq.nlargest(n, comp_count.items(), key=itemgetter(1))
topitemsdict = dict(topitems)
topitemsdict = {item: word_comp[item] for item in topitemsdict.keys() if (item[0].isalpha() and item[1].isalpha())}
top_comps = {item: word_comp[item] for item in topitemsdict.keys()}
# pair = list(top_comps.keys())[0]
# vis = top_comps[pair]
stdevs = {a: statistics.stdev(top_comps[a]) for a in top_comps.keys()}
# median_dist = {a: statistics.median(top_comps[a]) for a in top_comps.keys()}
# mode_dist = {a:statistics.mode(top_comps[a]) for a in top_comps.keys()}
# lowest_stdevs = heapq.nsmallest(10, stdevs)
# highest_stdevs = heapq.nlargest(10, stdevs)
# m = min(stdevs, key=stdevs.get)
# levenshteins = {item:get_levenshtein(item) for item in word_comp.keys()}
levenshteins_top = {item: get_levenshtein(
item) for item in topitemsdict.keys()}
# x = [levenshteins_top[item] for item in stdevs.keys()]
# y = [stdevs[item] for item in stdevs.keys()]
# y1 = [comp_count[item] for item in stdevs.keys()]
# # y2 = [median_dist[item] for item in stdevs.keys()]
# plt.scatter(x,y1)
# plt.scatter(x,y)
# plt.scatter(y,y1)
return topitemsdict, stdevs, levenshteins_top, comp_count, topitems
def evaluate_corpus(file, lines=True, num_lines=6000, hand='Both', voynich=False, n=5000):
if voynich:
paragraphs = create_df(file, hand)
# elif lines:
# paragraphs = convert_to_strings(file, num_lines)
else:
#try:
paragraphs = convert_to_strings(file, lines, num_lines)
# print('paragraphs on line 289' + str(paragraphs))
if not paragraphs:
print('par' + str(paragraphs))
return None
# print(paragraphs)
word_comp, comp_count = gen_comps(paragraphs, weighted=False)
#except:
# print("Analysis failed")
# return('Fail')
return analysis(word_comp, comp_count, n=n)
def focus_corpus(corpora_output, fin, tag=''):
output = corpora_output[fin]
# output = corpora_output[voynich_file]
topitemsdict = output[0]
le = output[2]
plt.hist(le.values(), bins=[0,1,2,3,4,5,6,7,8,9,10,11,12])
plt.title(fin + tag)
plt.savefig('output/'+ fin + tag + '.png')
plt.clf()
def multiple_corpora(corpora_output, fins, title, tag=''):
plt.figure(num=None, figsize=(20,20))
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
ax1.hist(corpora_output[fins[0]][2].values(), bins=list(range(13)))
ax2.hist(corpora_output[fins[1]][2].values(), bins=list(range(13)))
ax3.hist(corpora_output[fins[2]][2].values(), bins=list(range(13)))
ax4.hist(corpora_output[fins[3]][2].values(), bins=list(range(13)))
fig.suptitle(title)
plt.savefig('output/' + title + '.png')
plt.clf()
def run_on_folder(folder='txts'):
corpora_output = {}
global_n = 5000
last_time = time.time()
for corpus in os.listdir(folder):
# corpus = 'Catalan.txt'
# print(os.path.exists('output/' + corpus.rstrip('.txt') + '.png'))
if os.path.exists('output/' + corpus.rstrip('.txt') + '.png'):
print(corpus + " already evaluated")
continue
t = time.time()
time_dif = str(int(-last_time + t))
last_time = t
print(corpus + " @ " + datetime.datetime.now().strftime("%H:%M:%S with ") + time_dif + "s for last corpus")
if corpus=='Chinese':
corpora_output[corpus.rstrip('.txt')] = evaluate_corpus(folder + '/' + corpus, lines=False, n=1000)
else:
tmp_output = evaluate_corpus(folder + '/' + corpus, lines=False, n=global_n)
if tmp_output == None:
print("No output")
continue
corpora_output[corpus.rstrip('.txt')] = tmp_output
# print(evaluate_corpus(folder + '/' + corpus, lines=False, n=global_n))
# if None not in corpora_output.values():
focus_corpus(corpora_output, corpus.rstrip('.txt'))
# else:
# print(corpora_output.values())
# print("Analysis failed")
def main():
corpora = ['war_peace.txt', 'don_quixote.txt',
'great_expectations.txt', '60878-0.txt']
wiki_corpora = ['russian_wiki.txt', 'arabic_wiki.txt', 'Basque',
'Chinese', 'Latvian', 'Latin', 'Macedonian', 'Norweigen_Nyornsk']
gibberish = ['Non-Specialist/DA_01.txt',
'Non-Specialist/DC_10.txt',
'Non-Specialist/DC_08.txt',
'Non-Specialist/DC_11.txt',]
# wiki_corpora = ['data/xaa.txt', 'data/arabic_wiki.txt']
# wiki_corpora = ['data/xaa']
voynich_file = 'voynich_data.txt'
corpora_output = {}
global_n = 5000
for corpus in corpora:
corpora_output[corpus.rstrip('.txt')] = evaluate_corpus('data/' + corpus, n=global_n)
focus_corpus(corpora_output, corpus.rstrip('.txt'))
for corpus in wiki_corpora:
if corpus=='Chinese':
corpora_output[corpus.rstrip('.txt')] = evaluate_corpus('data/' + corpus, lines=False, n=1000)
else:
corpora_output[corpus.rstrip('.txt')] = evaluate_corpus('data/' + corpus, lines=False, n=global_n)
focus_corpus(corpora_output, corpus.rstrip('.txt'))
for corpus in gibberish:
corpora_output[corpus.rstrip('.txt')] = evaluate_corpus('data/' + 'gibberish_voynich/' + corpus, lines=False, n=50)
focus_corpus(corpora_output, corpus.rstrip('.txt'))
multiple_corpora(corpora_output, [a.rstrip('.txt') for a in gibberish], 'gibberish_corpora (non-specialist)')
for hand in ['A', 'B', 'Both']:
corpora_output[voynich_file.rstrip('.txt')] = evaluate_corpus('data/' + voynich_file, hand=hand, voynich=True, n=global_n)
focus_corpus(corpora_output, voynich_file.rstrip('.txt'), hand)
# for corpora in corpora_output.values():
# plt.savefig()
return corpora_output
# # a = [int(x) for x in (corpora_output[corpora[0].rstrip('.txt')][3]).values()]
# # plt.bar(range(len(a)), a)
# a = corpora_output[wiki_corpora[0].rstrip('.txt')][4][:5][0][0]
# corpora_output[wiki_corpora[0].rstrip('.txt')][0][a]
if __name__ == "__main__":
#data = main()
run_on_folder()