-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
200 lines (155 loc) · 7.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# ## multiwoz
import math, torch, torch.nn as nn, torch.nn.functional as F
import pickle as pkl, random
# from nltk.translate.bleu_score import sentence_bleu
import numpy as np
from torch.autograd import Variable
# import matplotlib.pyplot as plt
import time
import gc
import os, sys
from datetime import datetime
from collections import Counter
max_sent_len = 50
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(device)
def tokenize_en(sentence):
# return [tok.text for tok in en.tokenizer(sentence)]
return sentence.split()
def print_tensors():
total=0
for obj in gc.get_objects():
try:
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
# print(type(obj), obj.size())
total += torch.numel(obj)*4
except:
pass
print("{} GB".format(total/((1024**3) )))
def stat_cuda(msg):
print('--', msg)
print('allocated: %.2fG, max allocated: %.2fG, cached: %.2fG, max cached: %.2fG' % (
torch.cuda.memory_allocated() / 1024 / 1024/1024,
torch.cuda.max_memory_allocated() / 1024 / 1024/1024,
torch.cuda.memory_cached() / 1024 / 1024/1024,
torch.cuda.max_memory_cached() / 1024 / 1024/1024
))
def check_nan(t, name):
if (t!=t).any():
print("found nan, in ", name)
def Rand(start, end, num):
res = []
for j in range(num):
res.append(random.randint(start, end))
return res
# class batch from annotated transformer
def data_gen(dataset, batch_size, i, wordtoidx):
# print(i, len(dataset))
max_dial_len = len(dataset[i])-1
# upper_bound = min(i+batch_size, len(dataset))
upper_bound = i+batch_size
vectorised_seq = []
for d in dataset[i:upper_bound]:
# print(len(d), end=' ')
vectorised_seq.append([[wordtoidx.get(word, 1) for word in tokenize_en(sent)] for sent in d])
seq_lengths = torch.LongTensor([min(len(seq), max_sent_len) for seq in vectorised_seq])
seq_tensor = torch.zeros(batch_size, max_dial_len, max_sent_len, device=device)
target_tensor = torch.zeros(batch_size, max_sent_len, device=device)
label_tensor = torch.zeros(batch_size, max_sent_len, device=device)
for idx,(seq, seqlen) in enumerate(zip(vectorised_seq, seq_lengths)):
for i in range(seqlen-1):
seq_tensor[idx, i, :len(seq[i])] = torch.LongTensor(seq[i])
target_tensor[idx, :len(seq[seqlen-1])] = torch.LongTensor(seq[seqlen-1]) # last sentence in dialog
label_tensor[idx, :len(seq[seqlen-1])-1] = torch.LongTensor(seq[seqlen-1][1:]) # last sentence in dialog from first word
# changing labels to have SOS now, [1:]
seq_tensor = seq_tensor.transpose(1,2).reshape(batch_size, -1).transpose(0,1)
# seq_tensor - (msl*mdl , bs)
target_tensor = target_tensor.transpose(0,1)
label_tensor = label_tensor.transpose(0,1)
# print(seq_tensor.size(), target_tensor.size())
return seq_tensor.long(), target_tensor.long(), label_tensor.long()
def data_loader(dataset, dataset_counter, batch_size, wordtoidx):
# return batches according to dialog len, -> all similar at once
# do mask also for these
prev=0
for dial_len, val in dataset_counter.items():
# if val<2:
# continue
for i in range(prev, prev+val, batch_size):
# print(i, min(batch_size, prev+val-i))
yield data_gen(dataset,min(batch_size, prev+val-i), i, wordtoidx)
# break #uncomment both break statements to run for one batch
# break
prev += val
# class batch from annotated transformer with acts
def data_gen_acts(dataset, act_vecs, batch_size, i, wordtoidx):
# print(i, len(dataset))
max_dial_len = len(dataset[i])-1
upper_bound = i+batch_size
vectorised_seq = []
for d in dataset[i:upper_bound]:
# print(len(d), end=' ')
vectorised_seq.append([[wordtoidx.get(word, 1) for word in tokenize_en(sent)] for sent in d])
batch_actvecs = torch.tensor(act_vecs[i:upper_bound], device=device)
seq_lengths = torch.LongTensor([min(len(seq), max_sent_len) for seq in vectorised_seq])
seq_tensor = torch.zeros(batch_size, max_dial_len, max_sent_len, device=device)
target_tensor = torch.zeros(batch_size, max_sent_len, device=device)
label_tensor = torch.zeros(batch_size, max_sent_len, device=device)
for idx,(seq, seqlen) in enumerate(zip(vectorised_seq, seq_lengths)):
for i in range(seqlen-1):
seq_tensor[idx, i, :len(seq[i])] = torch.LongTensor(seq[i])
target_tensor[idx, :len(seq[seqlen-1])] = torch.LongTensor(seq[seqlen-1]) # last sentence in dialog
label_tensor[idx, :len(seq[seqlen-1])-1] = torch.LongTensor(seq[seqlen-1][1:]) # last sentence in dialog from first word, ie without sos
seq_tensor = seq_tensor.transpose(1,2).reshape(batch_size, -1).transpose(0,1)
# seq_tensor - (msl*mdl , bs)
target_tensor = target_tensor.transpose(0,1)
label_tensor = label_tensor.transpose(0,1)
batch_actvecs = batch_actvecs.transpose(0,1)
# print(batch_actvecs.shape)
return seq_tensor.long(), target_tensor.long(), label_tensor.long(), batch_actvecs.float()
def data_loader_acts(dataset, dataset_counter, act_vecs, batch_size, wordtoidx):
# return batches according to dialog len, -> all similar at once
# do mask also for these
prev=0
for dial_len, val in dataset_counter.items():
# if val<2:
# continue
for i in range(prev, prev+val, batch_size):
# print(i, min(batch_size, prev+val-i))
yield data_gen_acts(dataset, act_vecs, min(batch_size, prev+val-i), i, wordtoidx)
# break # uncomment both break stats to run for 1 batch for SET++,HIER++ models
# break
prev += val
def plot_grad_flow(named_parameters):
'''Plots the gradients flowing through different layers in the net during training.
Can be used for checking for possible gradient vanishing / exploding problems.
Usage: Plug this function in Trainer class after loss.backwards() as
"plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow'''
ave_grads = []
max_grads= []
layers = []
for n, p in named_parameters:
if(p.requires_grad) and ("bias" not in n):
layers.append(n)
ave_grads.append(p.grad.abs().mean())
max_grads.append(p.grad.norm())
# print(n, p.grad)
if p.grad.abs().max()==0.0:
print('grad became zero: ',n)
# plt.figure(figsize=(16, 20))
plt.bar(np.arange(len(max_grads)), max_grads, alpha=0.1, lw=1, color="c")
plt.bar(np.arange(len(max_grads)), ave_grads, alpha=0.1, lw=1, color="b")
plt.hlines(0, 0, len(ave_grads)+1, lw=2, color="k" )
plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical", fontsize=6)
plt.xlim(left=0, right=len(ave_grads))
plt.ylim(bottom = -0.001, top=0.02) # zoom in on the lower gradient regions
plt.xlabel("Layers")
plt.ylabel("average gradient")
plt.title("Gradient flow")
plt.grid(True)
plt.legend([Line2D([0], [0], color="c", lw=4),
Line2D([0], [0], color="b", lw=4),
Line2D([0], [0], color="k", lw=4)], ['max-gradient', 'mean-gradient', 'zero-gradient'])
# plt.tight_layout()
# plt.savefig("temp.png")
plt.show()