-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen.py
executable file
·74 lines (62 loc) · 2.27 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import json
import pickle
import torch
import numpy as np
import h5py
from data_loader import img2para_dataset
def gen_all(args, model, epoch):
if epoch <= args.eval_after:
return
img2para = pickle.load(open(args.img2para_path, 'rb'))
hypo = {}
ref = {}
dataset = img2para_dataset(args, False)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
# num_workers=args.num_workers,
batch_size=args.eval_batch_size,
shuffle=False,
)
for batch_idx, batch_data in enumerate(data_loader):
print (batch_idx)
img_ids, img_feats = batch_data[0], batch_data[1].to(args.device)
if args.beam:
res = model.beam_search(img_feats, args.beam_size)
else:
res = model.sample(img_feats)
for i, id in enumerate(img_ids):
hypo[id] = [res[i]]
ref_para = img2para[int(id)]
tmp_para = ''
for sent in ref_para:
sent = sent.replace(',', ' , ')
tmp_para += sent.lower() + ' . '
# tmp_para += sent.lower() + ' '
ref[id] = [tmp_para.strip()]
result = (hypo, ref)
type = 'beam' if args.beam else 'sample'
result_f = open(
os.path.join(args.eval_dir, str(args.model_name) + str(epoch) + type + str(args.beam_size) + '.txt'), 'w')
json.dump(result, result_f)
def gen_one(args, model, img_id):
test_img_names = json.load(open(args.test_img_path, 'r'))
test_feats = h5py.File(args.test_feats_path, 'r').get('feats')
img2dense = pickle.load(open(args.densecap_path, 'rb'))
if isinstance(img_id, int):
index = img_id
elif isinstance(img_id, str):
index = test_img_names.index(img_id)
else:
raise Exception('img_id TypeWrong')
test_feat = test_feats[index]
densecap = img2dense[test_img_names[index]]
densecap_mask = np.zeros(shape=densecap.shape, dtype=np.float32)
densecap_mask[densecap != 2] = 1
tmp_data = [test_feat, densecap, densecap_mask]
tmp_data = [torch.from_numpy(_).to(args.device) for _ in tmp_data]
test_feat, densecap, densecap_mask = tmp_data
if args.beam:
print (model.beam_search(test_feat, args.beam_size))
else:
print (model.sample(test_feat))