-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_unify.py
executable file
·289 lines (258 loc) · 10.5 KB
/
train_unify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import sys
from models.caption.cap_generator import UnifyDecoder
from models.caption.transformer import UnifyTransformer
import gc
import multiprocessing
# for p in sys.path:
# print(p)
import os
import random
import hydra
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from omegaconf import DictConfig, OmegaConf
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from datasets.caption.coco import build_coco_dataloaders
from datasets.caption.field import TextField
from datasets.caption.metrics import Cider, PTBTokenizer
from engine.caption_engine import *
from models.caption import CaptionGenerator, GridFeatureNetwork, Transformer
from models.caption.detector import build_detector
from models.common.attention import MemoryAttention
from tools.extract_features import extract_vis_features
from utils.cap_scheduler import CosineLRScheduler
def main(gpu, config):
torch.backends.cudnn.enabled = False
rank = config.exp.rank * config.exp.ngpus_per_node + gpu
dist.init_process_group('nccl', 'env://', rank=rank, world_size=config.exp.world_size)
torch.manual_seed(config.exp.seed)
np.random.seed(config.exp.seed)
random.seed(config.exp.seed)
device = torch.device(f"cuda:{gpu}")
torch.cuda.set_device(gpu)
detector = build_detector(config).to(device)
if os.path.exists(config.model.detector.checkpoint):
checkpoint = torch.load(config.model.detector.checkpoint, map_location='cpu')
missing, unexpected = detector.load_state_dict(checkpoint['model'], strict=False)
print("det missing:", len(missing))
print("det unexpected:", len(unexpected))
else:
print("not using detector ckpt")
grit_net = GridFeatureNetwork(
pad_idx=config.model.pad_idx,
d_in=config.model.grid_feat_dim,
dropout=config.model.dropout,
attn_dropout=config.model.attn_dropout,
attention_module=MemoryAttention,
**config.model.grit_net,
)
cap_generator = UnifyDecoder(
vocab_size=config.model.vocab_size,
max_len=config.model.max_len,
pad_idx=config.model.pad_idx,
dropout=config.model.dropout,
attn_dropout=config.model.attn_dropout,
cfg=config.model.cap_generator,
all_cfg=config,
**config.model.cap_generator,
)
model = UnifyTransformer(
grit_net,
cap_generator,
detector=detector, # .module,
use_gri_feat=config.model.use_gri_feat,
use_reg_feat=config.model.use_reg_feat,
config=config,
)
model = model.to(device)
start_epoch = 0
best_cider_val = 0.0
best_cider_test = 0.0
if os.path.exists(config.exp.checkpoint):
checkpoint = torch.load(config.exp.checkpoint, map_location='cpu')
missing, unexpected = model.load_state_dict(checkpoint['state_dict'], strict=False)
print("model missing:", len(missing))
print("model unexpected:", len(unexpected))
if 'backbone' in checkpoint:
model.detector.backbone.load_state_dict(checkpoint['backbone'], strict=False)
if config.exp.resume:
start_epoch = checkpoint['epoch'] + 1
print(f"Resume model at epoch {start_epoch} from checkpoint {config.exp.checkpoint}")
if 'best_ciders' in checkpoint:
best_cider_val, best_cider_test = checkpoint['best_ciders']
print(f"Best cider val: {best_cider_val}, test: {best_cider_test}")
if start_epoch < config.optimizer.freezing_xe_epochs:
if getattr(config.optimizer, 'freeze_backbone', False):
for p, n in model.named_parameters():
if 'backbone' in n:
p.requires_grad = False
if getattr(config.optimizer, 'freeze_detector', False):
for p, n in model.named_parameters():
if 'detector' in n:
p.requires_grad = False
else:
pass
model = DDP(model, device_ids=[gpu], find_unused_parameters=True, broadcast_buffers=False)
optimizers = build_optimizers(model, config, mode='xe')
writer = SummaryWriter(log_dir='tensorboard') if rank == 0 or rank == 1 else None
if start_epoch < config.optimizer.freezing_xe_epochs+config.optimizer.freezing_sc_epochs \
and not getattr(config.optimizer, 'freeze_backbone', False):
model.module.cached_features = True
dataloaders, samplers = build_coco_dataloaders(config, mode='freezing', device=device)
else:
model.module.cached_features = False
dataloaders, samplers = build_coco_dataloaders(config, mode='finetune', device=device)
text_field = TextField(vocab_path=config.dataset.vocab_path)
train_dataset = dataloaders['train'].dataset
tokenizer = multiprocessing.Pool(config.optimizer.num_workers)
scheduler = CosineLRScheduler(
optimizers['model'],
num_epochs=config.optimizer.freezing_xe_epochs + config.optimizer.finetune_xe_epochs,
num_its_per_epoch=len(dataloaders['train']),
init_lr=config.optimizer.xe_lr,
min_lr=config.optimizer.min_lr,
warmup_init_lr=config.optimizer.warmup_init_lr,
)
if config.exp.resume:
scheduler.load_state_dict(checkpoint['scheduler'])
print(f"Resume scheduler at step {scheduler.global_steps} from checkpoint {config.exp.checkpoint}")
print(f"set min_lr={scheduler.min_lr}, init_lr={scheduler.init_lr}")
fr_xe_epochs = config.optimizer.freezing_xe_epochs # 10
fr_sc_epochs = fr_xe_epochs + config.optimizer.freezing_sc_epochs # 15
ft_xe_epochs = fr_sc_epochs + config.optimizer.finetune_xe_epochs # 20
ft_sc_epochs = ft_xe_epochs + config.optimizer.finetune_sc_epochs # 20
total_epochs = ft_sc_epochs
for epoch in range(max(0, start_epoch), total_epochs):
if epoch < fr_xe_epochs:
phase = 'fr_xe'
if fr_xe_epochs <= epoch < fr_sc_epochs:
phase = 'fr_sc'
if fr_sc_epochs <= epoch < ft_xe_epochs:
phase = 'ft_xe'
if ft_xe_epochs <= epoch < ft_sc_epochs:
phase = 'ft_sc'
if (phase == 'ft_sc' or phase == 'ft_xe') and dataloaders['train'].dataset.image_field.use_hdf5_feat:
model.module.cached_features = False
dataloaders, samplers = build_coco_dataloaders(config, mode='finetune', device=device)
if (phase == 'fr_sc' or phase == 'ft_sc') and optimizers['mode'] == 'xe':
optimizers = build_optimizers(model, config, mode='sc')
if (phase == 'fr_xe' or phase == 'ft_xe') and optimizers['mode'] == 'sc':
optimizers = build_optimizers(model, config, mode='xe')
print(f"Train: rank={rank}, epoch={epoch}, phase={phase}")
if phase == 'fr_xe' or phase == 'ft_xe':
train_res = train_xe_levt(
model,
dataloaders,
optimizers=optimizers,
text_field=text_field,
epoch=epoch,
rank=rank,
config=config,
scheduler=scheduler,
writer=writer,
)
samplers['train'].set_epoch(epoch)
elif phase =='ft_xe':
train_res = train_xe_levt(
model,
dataloaders,
optimizers=optimizers,
text_field=text_field,
epoch=epoch,
rank=rank,
config=config,
scheduler=None,
writer=writer,
)
samplers['train'].set_epoch(epoch)
elif phase=='fr_sc':
train_res = train_sc_levt(
model,
dataloaders,
optimizers=optimizers,
text_field=text_field,
epoch=epoch,
rank=rank,
config=config,
scheduler=scheduler,
writer=writer,
)
samplers['train_dict'].set_epoch(epoch)
elif phase=='ft_sc':
train_res = train_sc_levt(
model,
dataloaders,
optimizers=optimizers,
text_field=text_field,
epoch=epoch,
rank=rank,
config=config,
scheduler=scheduler,
writer=writer,
)
samplers['train_dict'].set_epoch(epoch)
if rank == 0:
best_cider_val = evaluate_metrics_levt(
model,
optimizers,
dataloader=dataloaders['valid_dict'],
text_field=text_field,
epoch=epoch,
split='valid',
config=config,
train_res=train_res,
writer=writer,
best_cider=best_cider_val,
which=phase,
scheduler=scheduler,
)
if rank == 1:
best_cider_test = evaluate_metrics_levt(
model,
optimizers,
dataloader=dataloaders['test_dict'],
text_field=text_field,
epoch=epoch,
split='test',
config=config,
train_res=train_res,
writer=writer,
best_cider=best_cider_test,
which=phase,
scheduler=scheduler,
)
if rank == 0:
save_checkpoint(
model,
optimizers,
epoch=epoch,
scores=[],
best_ciders=[0, 0],
config=config,
filename=f'checkpoint_{phase}.pth',
scheduler=scheduler,
)
if epoch >= 15:
save_checkpoint(
model,
optimizers,
epoch=epoch,
scores=[],
best_ciders=[0, 0],
config=config,
filename=f'checkpoint_{epoch}.pth',
scheduler=scheduler,
)
torch.distributed.barrier()
@hydra.main(config_path="configs/caption", config_name="coco_config")
def run_main(config: DictConfig) -> None:
with open('config.yaml', 'w') as f:
f.write(OmegaConf.to_yaml(config))
mp.spawn(main, nprocs=config.exp.ngpus_per_node, args=(config,))
if __name__ == "__main__":
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "6688")
run_main()