-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_decam.py
331 lines (265 loc) · 12.4 KB
/
train_decam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Training script for decam data
# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import numpy as np
import os, json, cv2, random
import argparse
import logging
import sys
#from google.colab.patches import cv2_imshow
import matplotlib.pyplot as plt
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data import build_detection_train_loader
from detectron2.engine import default_argument_parser, default_setup, hooks, launch
from typing import Dict, List, Optional
import detectron2.solver as solver
import detectron2.modeling as modeler
import detectron2.data as data
import detectron2.data.transforms as T
import detectron2.checkpoint as checkpointer
from detectron2.data import detection_utils as utils
import detectron2.utils.comm as comm
import weakref
import copy
import torch
import time
import imgaug.augmenters as iaa
from astrodet import astrodet as toolkit
from astrodet.astrodet import read_image
from astrodet import detectron as detectron_addons
#Custom Aug classes have been added to detectron source files
from astrodet.detectron import CustomAug
import imgaug.augmenters.flip as flip
import imgaug.augmenters.blur as blur
# Prettify the plotting
from astrodet.astrodet import set_mpl_style
set_mpl_style()
from detectron2.structures import BoxMode
from astropy.io import fits
import glob
def get_data_from_json(file):
# Opening JSON file
with open(file, 'r') as f:
data = json.load(f)
return data
def main(dataset_names,train_head,args):
# Hack if you get SSL certificate error
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
output_dir = args.output_dir
output_name=args.run_name
cfgfile=args.cfgfile
dirpath = args.data_dir # Path to dataset
# ### Prepare For Training
# Training logic:
# To replicate 2019 methodology, need to
# 1) run intially with backbone frozen (freeze_at=4) for 15 epochs
# 2) unfreeze and run for [25,35,50] epochs with lr decaying by 0.1x each time
for i, d in enumerate(dataset_names):
filenames_dir = os.path.join(dirpath,d)
#DatasetCatalog.register("astro_" + d, lambda: get_astro_dicts(filenames_dir))
#MetadataCatalog.get("astro_" + d).set(thing_classes=["star", "galaxy"], things_colors = ['blue', 'gray'])
DatasetCatalog.register("astro_" + d, lambda: get_data_from_json(filenames_dir+'.json'))
MetadataCatalog.get("astro_" + d).set(thing_classes=["star", "galaxy"], things_colors = ['blue', 'gray'])
astro_metadata = MetadataCatalog.get("astro_train")
#tl=len(dataset_dicts['train'])
tl=1000
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(cfgfile)) # Get model structure
cfg.DATASETS.TRAIN = ("astro_train") # Register Metadata
cfg.DATASETS.TEST = ("astro_val") # Config calls this TEST, but it should be the val dataset
cfg.TEST.EVAL_PERIOD = 40
cfg.DATALOADER.NUM_WORKERS = 1
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 250 # faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 512
#cfg.MODEL.PIXEL_MEAN = [-200,-200,-200]
cfg.INPUT.MIN_SIZE_TRAIN = 512
cfg.INPUT.MAX_SIZE_TRAIN = 512
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[8, 16, 32, 64, 128]]
cfg.SOLVER.IMS_PER_BATCH = 4 # this is images per iteration. 1 epoch is len(images)/(ims_per_batch iterations*num_gpus)
cfg.OUTPUT_DIR = output_dir
cfg.TEST.DETECTIONS_PER_IMAGE = 1000
cfg.SOLVER.CLIP_GRADIENTS.ENABLED = True
# Type of gradient clipping, currently 2 values are supported:
# - "value": the absolute values of elements of each gradients are clipped
# - "norm": the norm of the gradient for each parameter is clipped thus
# affecting all elements in the parameter
cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE = "norm"
# Maximum absolute value used for clipping gradients
# Floating point number p for L-p norm to be used with the "norm"
# gradient clipping type; for L-inf, please specify .inf
cfg.SOLVER.CLIP_GRADIENTS.NORM_TYPE = 5.0
# itertions for 15,25,35,50 epochs
epoch = int(tl/cfg.SOLVER.IMS_PER_BATCH)
e1=epoch*15
e2=epoch*10
e3=epoch*20
efinal=epoch*35
val_per = epoch
#cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE= True
if train_head:
# Step 1)
cfg.MODEL.BACKBONE.FREEZE_AT = 4 # Initial re-training of the head layers (i.e. freeze the backbone)
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.STEPS = [] # do not decay learning rate for retraining head layers
cfg.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"
cfg.SOLVER.WARMUP_ITERS = 0
cfg.SOLVER.MAX_ITER = e1 # for DefaultTrainer
init_coco_weights = True # Start training from MS COCO weights
if init_coco_weights:
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(cfgfile) # Initialize from MS COCO
else:
cfg.MODEL.WEIGHTS = os.path.join(output_dir, 'model_temp.pth') # Initialize from a local weights
print(cfg)
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
model = modeler.build_model(cfg)
optimizer = solver.build_optimizer(cfg, model)
_train_mapper = toolkit.train_mapper_cls(normalize=args.norm,ceil_percentile=99.99)
_test_mapper = toolkit.test_mapper_cls(normalize=args.norm,ceil_percentile=99.99)
loader = data.build_detection_train_loader(cfg, mapper=_train_mapper)
test_loader = data.build_detection_test_loader(cfg,cfg.DATASETS.TEST,mapper=_test_mapper)
saveHook = detectron_addons.SaveHook()
saveHook.set_output_name(output_name)
schedulerHook = detectron_addons.CustomLRScheduler(optimizer=optimizer)
lossHook = detectron_addons.LossEvalHook(val_per, model, test_loader)
hookList = [lossHook,schedulerHook,saveHook]
trainer = toolkit.NewAstroTrainer(model, loader, optimizer, cfg)
trainer.register_hooks(hookList)
trainer.set_period(epoch) # print loss every n iterations
trainer.train(0,e1)
if comm.is_main_process():
np.save(output_dir+output_name+'_losses',trainer.lossList)
np.save(output_dir+output_name+'_val_losses',trainer.vallossList)
return
#return trainer.train(0, e1)
else:
# Step 2)
cfg.MODEL.BACKBONE.FREEZE_AT = 0 # unfreeze all backbone layers
cfg.SOLVER.BASE_LR = 0.0001
cfg.SOLVER.STEPS = [e2,e3] # decay learning rate
#cfg.SOLVER.STEPS = [50,100] # decay learning rate
cfg.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"
cfg.SOLVER.WARMUP_ITERS = 0
cfg.SOLVER.MAX_ITER = efinal # for LR scheduling
cfg.MODEL.WEIGHTS = os.path.join(output_dir, output_name+'.pth') # Initialize from a local weights
_train_mapper = toolkit.train_mapper_cls(normalize=args.norm,ceil_percentile=args.cp)
_test_mapper = toolkit.test_mapper_cls(normalize=args.norm,ceil_percentile=args.cp)
model = modeler.build_model(cfg)
optimizer = solver.build_optimizer(cfg, model)
loader = data.build_detection_train_loader(cfg, mapper=_train_mapper)
test_loader = data.build_detection_test_loader(cfg,cfg.DATASETS.TEST,mapper=_test_mapper)
saveHook = detectron_addons.SaveHook()
saveHook.set_output_name(output_name)
schedulerHook = detectron_addons.CustomLRScheduler(optimizer=optimizer)
lossHook = detectron_addons.LossEvalHook(val_per, model, test_loader)
hookList = [lossHook,schedulerHook,saveHook]
trainer = toolkit.NewAstroTrainer(model, loader, optimizer, cfg)
trainer.register_hooks(hookList)
trainer.set_period(epoch) # print loss every n iterations
trainer.train(0,efinal)
if comm.is_main_process():
losses = np.load(output_dir+output_name+'_losses.npy')
losses= np.concatenate((losses,trainer.lossList))
np.save(output_dir+output_name+'_losses',losses)
vallosses = np.load(output_dir+output_name+'_val_losses.npy')
vallosses= np.concatenate((vallosses,trainer.vallossList))
np.save(output_dir+output_name+'_val_losses',vallosses)
return
def custom_argument_parser(epilog=None):
"""
Create a parser with some common arguments used by detectron2 users.
Args:
epilog (str): epilog passed to ArgumentParser describing the usage.
Returns:
argparse.ArgumentParser:
"""
parser = argparse.ArgumentParser(
epilog=epilog
or f"""
Examples:
Run on single machine:
$ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml
Change some config options:
$ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001
Run on multiple machines:
(machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags]
(machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags]
""",
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume from the checkpoint directory. "
"See documentation of `DefaultTrainer.resume_or_load()` for what it means.",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
parser.add_argument("--run-name", type=str, default='baseline', help="output name for run")
parser.add_argument("--cfgfile", type=str, default='COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml', help="path to model config file")
parser.add_argument("--norm", type=str, default='lupton', help="contrast scaling")
parser.add_argument("--data-dir", type=str, default='/home/shared/hsc/decam/decam_data/', help="directory with data")
parser.add_argument("--output-dir", type=str, default='./', help="output directory to save model")
parser.add_argument(
"--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
)
parser.add_argument("--cp", type=float, default=99.99, help="ceiling percentile for saturation cutoff")
# PyTorch still may leave orphan processes in multi-gpu training.
# Therefore we use a deterministic way to obtain port,
# so that users are aware of orphan processes by seeing the port occupied.
port = 2**15 + 2**14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2**14
parser.add_argument(
"--dist-url",
default="tcp://127.0.0.1:{}".format(port),
help="initialization URL for pytorch distributed backend. See "
"https://pytorch.org/docs/stable/distributed.html for details.",
)
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
return parser
if __name__ == "__main__":
args = custom_argument_parser().parse_args()
print("Command Line Args:", args)
dataset_names = ['train', 'test', 'val']
print('Training head layers')
train_head=True
t0=time.time()
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(dataset_names,train_head,args),
)
print('Training full model')
train_head=False
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(dataset_names,train_head,args),
)
print(f'Took {time.time()-t0} seconds')