-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpid.h
613 lines (511 loc) · 20 KB
/
pid.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#ifndef __PID__
#define __PID__
#include "main.h"
#include "global.h"
#include <vector>
#include <numeric>
#include <stdio.h>
#include <cmath>
#include <cstring>
namespace pid
{
double global_heading = 0;
double last_heading = glb::imu.get_heading();
void drive(double distance, int timeout=3000)
{
int time = 0;
// constants
double kP = 0.8;
double kI = 3.0;
double kD = 0.07;
double straight_kP = 4.0;
double straight_kI = 1.0;
// initialize drive pid variables
double start_pos = glb::chas.pos();
double error = distance - (glb::chas.pos() - start_pos);
double last_error;
double integral = 0;
// initialize straight pid variables
if(global_heading >= 360)
{
global_heading -= 360;
}
else if(global_heading <= -360)
{
global_heading += 360;
}
double init_heading = global_heading;
double cur_heading = glb::imu.get_heading();
double straight_i = 0;
// variables for exiting if within 5 error for 100ms
bool within_err = false;
int within_err_time = 0;
double slew = 0.1;
while(time < timeout)
{
// calculate drive pid variables
last_error = error;
error = distance - (glb::chas.pos() - start_pos);
if(abs(error) < 50) integral += error / 100;
double derivative = (error - last_error) * 100;
// check for exit condition
if(abs(error) < 15)
{
if(within_err == false)
{
within_err = true;
within_err_time = time;
}
else
{
if(within_err_time + 150 <= time)
break;
}
}
else
{
within_err = false;
}
// calculate correction pid variables and speed
double speed = error * kP + integral * kI + derivative * kD;
if(abs(speed) > 127) speed = speed / abs(speed) * 127;
// inertial wrapping
if(cur_heading - last_heading > 100)
{
global_heading += (cur_heading - 360) - last_heading;
}
else if(cur_heading - last_heading < -100)
{
global_heading += cur_heading + (360 - last_heading);
}
else
{
global_heading += cur_heading - last_heading;
}
last_heading = cur_heading;
cur_heading = glb::imu.get_heading();
double straight_error = global_heading - init_heading;
straight_i += (straight_error) / 100;
double correction = abs(speed) / 75 * (straight_i * straight_kI + straight_kP * straight_error);
slew += slew <= 1 ? 0.1 : 0;
slew = slew > 1 ? 1 : slew;
// apply speed
glb::chas.spin_left(slew * (speed - correction));
glb::chas.spin_right(slew * (speed + correction));
// print stuff
if(time % 50 == 0)
glb::con.print(0, 0, "err: %.2lf c: %.2lf ", error, within_err_time);
// update time
pros::delay(10);
time += 10;
}
// stop chassis at end of loop
// printf("d: %lf - %d\n", error, time);
glb::chas.stop();
}
void drive_const(double distance, int speed=127, int timeout=3000)
{
int time = 0;
double start_pos = glb::chas.pos();
double target = start_pos + distance;
double s = distance / fabs(distance) * abs(speed);
double straight_kP = 3.5;
double straight_kI = 1.0;
double straight_i = 0;
double init_heading = global_heading;
double cur_heading = glb::imu.get_heading();
while((distance < 0 ? glb::chas.pos() > target : glb::chas.pos() < target) && time < timeout)
{
// inertial wrapping
if(cur_heading - last_heading > 100)
{
global_heading += (cur_heading - 360) - last_heading;
}
else if(cur_heading - last_heading < -100)
{
global_heading += cur_heading + (360 - last_heading);
}
else
{
global_heading += cur_heading - last_heading;
}
last_heading = cur_heading;
cur_heading = glb::imu.get_heading();
straight_i += (global_heading - init_heading) / 100;
double correction = straight_i * straight_kI + (global_heading - init_heading) * straight_kP;
glb::chas.spin_left(s - correction);
glb::chas.spin_right(s + correction);
pros::delay(10);
time += 10;
}
glb::chas.stop();
}
void turn(double degrees, int timeout=2000)
{
int time = 0;
// constants
double kP, kI, kD;
kP = 7.2;
kI = 22;
kD = 0.52;
// inertial wrapping
double init_heading = global_heading;
double cur_heading = glb::imu.get_heading();
double left_chas_s = glb::chas.left_pos();
double right_chas_s = glb::chas.right_pos();
// initialize pid variables
double error = degrees - global_heading;
double last_error;
double integral = 0;
// variables for exiting if within 0.1 error for 250ms
bool within_err = false;
int within_err_time = 0;
// printf("t: %lf - %d - %lf\n", error, time, global_heading);
while(time < timeout)
{
// inertial wrapping
if(cur_heading - last_heading > 100)
{
global_heading += (cur_heading - 360) - last_heading;
}
else if(cur_heading - last_heading < -100)
{
global_heading += cur_heading + (360 - last_heading);
}
else
{
global_heading += cur_heading - last_heading;
}
last_heading = cur_heading;
cur_heading = glb::imu.get_heading();
// calculate pid
last_error = error;
error = degrees - (global_heading - init_heading);
double derivative = (error - last_error) * 100;
if(abs(error) < 5) integral += (error / 100);
else integral = 0;
// check for exit condition
if(abs(error) <= 0.35)
{
if(within_err == false)
{
within_err = true;
within_err_time = time;
}
else
{
if(within_err_time + 150 <= time)
break;
}
}
else
{
within_err = false;
}
// calculate speed
double speed = kP * error + integral * kI + derivative * kD;
glb::chas.spin_left(speed);
glb::chas.spin_right(-speed);
// print stuff
if(time % 50 == 0)
glb::con.print(0, 0, "err: %.2lf ", error);
// update time
pros::delay(10);
time += 10;
}
// stop chassis at end of loop
// printf("[%lf, %lf]\n", (glb::chas.left_pos() - left_chas_s)/(degrees*M_PI/180), (glb::chas.right_pos() - right_chas_s)/(degrees*M_PI/180));
glb::chas.stop();
}
void turn_to(double degree_to, int timeout=3500)
{
if(global_heading >= 360)
{
global_heading -= 360;
}
else if(global_heading <= -360)
{
global_heading += 360;
}
double degree = degree_to - global_heading;
degree = (degree > 180) ? -(360 - degree) : ((degree < -180) ? (360 + degree) : (degree)); // optimize the turn direction
turn(degree, timeout);
}
void arc_turn(double degrees, double radius_enc, int timeout=3000)
{
// define wheelbase information (set manually before usage of function)
double inner = degrees > 0 ? 343.1062262 : 263.7834026;
double outer = degrees > 0 ? 263.7834026 : 343.1062262;
double ratio = (radius_enc + inner) / (radius_enc - outer);
// // initial variables
// double right_start = glb::chas.right_pos();
// double left_start = glb::chas.left_pos();
// // define inner and outer targets
// double inner_target = 2 * M_PI * radius_enc * degrees / 360 + right_start;
// double outer_target = 2 * M_PI * (radius_enc + wheelbase_enc) * degrees / 360 + left_start;
// // inner radius PID variables
// double inner_error = inner_target - glb::chas.right_pos();
// double inner_i = 0;
// double last_inner_err;
// // outer radius PID variables
// double outer_error = outer_target - glb::chas.left_pos();
// double outer_i = 0;
// double last_outer_err;
// // outer radius difference from ideal location based on inner distance PID variables
// double rem_inner_deg = degrees * (inner_error / inner_target);
// double ideal_outer_err = (rem_inner_deg / degrees) * outer_target;
// double outer_diff_err = ideal_outer_err - outer_error;
// double outer_diff_i = 0;
// double last_outer_diff;
// degree difference from ideal degree based on current inner distance using imu PID variables
// double ideal_deg = degrees * ((inner_target - inner_error) / inner_target);
// inertial wrapping
double init_heading = global_heading;
double cur_heading = glb::imu.get_heading();
// initialize pid variables
double error = degrees - global_heading;
double last_error;
double integral = 0;
// variables for exiting if within 0.1 error for 250ms
bool within_err = false;
int within_err_time = 0;
// define constants and time;
// double kP = 0.8;
// double kI = 1.0;
// double kD = 0.35;
// double diff_kP = 0.2;
// double diff_kI = 0;
// double diff_kD = 0;
double kP = 2.5;
double kI = 0;
double kD = 0.1;
int time = 0;
while(time < timeout)
{
if(cur_heading - last_heading > 100)
{
global_heading += (cur_heading - 360) - last_heading;
}
else if(cur_heading - last_heading < -100)
{
global_heading += cur_heading + (360 - last_heading);
}
else
{
global_heading += cur_heading - last_heading;
}
last_heading = cur_heading;
cur_heading = glb::imu.get_heading();
// // update inner radius variables
// last_inner_err = inner_error;
// inner_error = inner_target - glb::chas.right_pos();
// inner_i += inner_error / 100;
// double inner_d = (inner_error - last_inner_err) * 100;
// // update outer radius variables
// last_outer_err = outer_error;
// outer_error = outer_target - glb::chas.left_pos();
// outer_i += outer_error / 100;
// double outer_d = (outer_error - last_outer_err) * 100;
// // update ideal difference variables
// rem_inner_deg = degrees * (inner_error / inner_target);
// ideal_outer_err = (rem_inner_deg / degrees) * outer_target;
// last_outer_diff = outer_diff_err;
// outer_diff_err = ideal_outer_err - outer_error; // outer_diff_err > 0 means outer side is going too fast. outer_diff_err < 0 means outer side is going too slow
// outer_diff_i += outer_diff_err / 100;
// double outer_diff_d = (outer_diff_err - last_outer_diff) * 100;
// update degree difference variables
// ideal_deg = degrees * ((inner_target - inner_error) / inner_target);
last_error = error;
error = degrees - (global_heading - init_heading);
double derivative = (error - last_error) * 100;
if(abs(error) < 5) integral += (error / 100);
else integral = 0;
if(abs(error) <= 0.35)
{
if(within_err == false)
{
within_err = true;
within_err_time = time;
}
else
{
if(within_err_time + 150 <= time)
break;
}
}
else
{
within_err = false;
}
double vel = error * kP + integral * kI + derivative * kD;
if(abs(vel > 127)) vel = 127 * abs(vel) / vel;
double left_speed = (ratio * vel) * radius_enc / abs(radius_enc);
double right_speed = (vel / (ratio+1)) * radius_enc / abs(radius_enc);
// check for exit condition
// if(abs(inner_error) < 5 && abs(glb::chas.left_speed()) < 10)
// {
// break;
// }
// calculate speeds
// double f_ms = [](double speed) { return abs(speed) > 127 ? abs(speed) / speed) * 127 : speed; }; // lambda function checking that speed does not exceed 127
// double rspeed = kP * inner_error + inner_i * kI + inner_d * kD; rspeed = f_ms(rspeed);
// double lspeed = kP * outer_error + outer_i * kI + outer_d * kD; lspeed = f_ms(rspeed);
// double dist_correction = diff_kP * outer_diff_err + diff_kI * outer_diff_i + outer_diff_d * diff_kD;
// double imu_correction = imu_kP * deg_err + imu_kI * deg_i + imu_kD * deg_d;
// apply speed
// glb::chas.spin_left(lspeed - dist_correction + imu_correction);
// glb::chas.spin_right(rspeed + dist_correction - imu_correction);
glb::chas.spin_left(left_speed);
glb::chas.spin_right(right_speed);
// update time
pros::delay(10);
time += 10;
}
// stop chassis at end of loop
glb::chas.stop();
}
// flywheel =============================================================
namespace fw
{
double flywheel_target = 0;
bool recover = true;
bool force_recover = false;
int time = 0;
// constants
double kP = 0.5;
double kI = 0.8;
double kD = 0.0;
double kF = 0.199;
double full_speed = 50;
// initialize pid variables
double actual_avg = (glb::flywheelL.get_actual_velocity() + glb::flywheelR.get_actual_velocity()) / 2;
double error = 0;
double integral = 0;
double last_error;
double derivative = 0;
double base_speed = 0;
double win_avg = 0;
void fw_pid()
{
// moving average vars
double window[50];
memset(window, 0, sizeof(window)); // 0 initialize window;
int win_size = sizeof(window) / sizeof(window[0]);
win_avg = 0;
auto f_window = [](int i, int win_size) { return pow((double) (i+1)/win_size, 2);}; // moving average weighting
// recovery delay
int recover_start_time = 0;
bool recover_start = false;
bool had_two = false;
while(true) // defined as a task; always running
{
if(flywheel_target > 400) full_speed = 20;
else full_speed = 50;
double speed = flywheel_target;
// calculate average speed
actual_avg = (glb::flywheelL.get_actual_velocity() + glb::flywheelR.get_actual_velocity()) / 2;
// calculate average of last n window of values weighted by an exponential function defined as f_window above
memmove(window, window+1, sizeof(window[0]) * win_size - sizeof(window[0]));
window[win_size-1] = actual_avg;
double window_sum = 0;
double n_terms = 0;
for(int i = 0; i < win_size; i++)
{
window_sum += window[i] * f_window(i, win_size);
n_terms += f_window(i, win_size);
}
win_avg = window_sum / n_terms;
// if target speed is set to 0, reset all variables
if(flywheel_target == 0 || speed == 0)
{
glb::flywheelL.move(0);
glb::flywheelR.move(0);
memset(window, 0, sizeof(window));
error = 0;
last_error = 0;
integral = 0;
derivative = 0;
}
else if(flywheel_target < 0)
{
glb::flywheelL = flywheel_target;
glb::flywheelR = flywheel_target;
memset(window, 0, sizeof(window));
error = 0;
last_error = 0;
integral = 0;
derivative = 0;
}
else
{
// calculate pid variables (different calculations for auton and not autonomous)
double volt_speed = 0;
if(force_recover) volt_speed = 127;
else
{
if(recover)
{
if(glb::intakeR.get_actual_velocity() > 30 && flywheel_target < 420)
{
if(recover_start == false)
{
recover_start = true;
recover_start_time = time;
}
else if(recover_start_time + (glb::angleP.get_status() ? 0 : 0) < time && recover_start_time + 1500 > time)
{
speed = 600;
}
}
else
{
recover_start = false;
}
}
last_error = error;
error = speed - win_avg;
if(abs(error) < 20) integral += error / 100;
else integral = 0;
derivative = (error - last_error);
double temp_kP = error < -5 ? kP / 30 : kP;
volt_speed = speed * kF + error * temp_kP + integral * kI + derivative * kD;
// flywheel recovery adds to target speed
}
if(volt_speed > 127) volt_speed = 127;
if(error > full_speed) volt_speed = 127;
if(volt_speed < 0) volt_speed = 0;
glb::flywheelL.move(volt_speed);
glb::flywheelR.move(volt_speed);
// print stuff
if(time % 100 == 0 && time % 1600 != 0 && win_avg > 150)
glb::con.print(1, 0, "rpm: %.2lf", (win_avg));
if(speed != 0) printf("[%lf, %lf], ", win_avg, volt_speed / 127 * 600);
}
// update time
pros::delay(10);
time += 10;
}
}
}
void fw_spin(double speed)
{
fw::flywheel_target = speed;
}
void fw_recover(bool on=true)
{
fw::recover = on;
}
double fw_speed()
{
return fw::win_avg;
}
void fw_stop()
{
fw_spin(0);
}
double fw_target()
{
return fw::flywheel_target;
}
}
#endif