-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathINPParser.py
417 lines (391 loc) · 18.3 KB
/
INPParser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# -*- coding: utf-8 -*-
"""
© Ihor Mirzov, May 2019
Distributed under GNU General Public License v3.0
Parses finite element mesh in the Abaqus, Gmsh or CalculiX .inp-file.
Tested on 2D quadrilateral and triangular first order elements.
Reads nodes coordinates, elements composition, node and element sets, surfaces.
Calculates elements cendroid coordinates.
Generates triangles or quadrangles list to use with matplotlib.
'project_field_on_centroids' method interpolates node field to elements centroids.
"""
import numpy as np
import matplotlib.tri as tri
# Mesh object, contains methods for .inp-file parsing
class Mesh:
# All mesh nodes with coordinates
"""
1: ( 0.0, -1742.5, 0.0),
2: (74.8, -1663.7, 0.0),
...
"""
nodes = {}
# All mesh elements composition
"""
1: (1, 2),
2: (3, 4),
...
11: (21, 22, 23),
12: (24, 25, 26),
...
"""
elements = {}
# Element types
"""
1: 'type1',
2: 'type2',
...
"""
types = {}
# Coordinates of all elements centroids
"""
1: ( 0.0, -1742.5, 0.0),
2: (74.8, -1663.7, 0.0),
...
"""
centroids = {}
# Node sets
"""
'nset1': [1, 2, 3, 4],
'nset2': [5, 6, 7, 8],
...
"""
nsets = {}
# Element sets
"""
'eset1': [1, 2, 3, 4],
'eset2': [5, 6, 7, 8],
...
"""
esets = {}
# Surface names
"""
'surf1', 'surf2', 'surf3',
"""
surfaces = ()
# Additional mesh variables
cx = []; cy = [] # centroid coordinates as numpy array
nx = []; ny = [] # nodes coordinates as numpy array
triangles = () # triangles list to use with matplotlib
quadrangles = [] # quadrangles to use with matplotlib
# Some parameters
initialized = False
# Parse nodes with coordinates
# *NODE keyword
def get_nodes(self, lines):
for i in range(len(lines)):
if lines[i].startswith('*NODE'):
while i+1<len(lines) and not lines[i+1].startswith('*'): # read the whole block and return
a = lines[i+1].split(',')
num = int(a[0].strip()) # node number
self.nodes[num] = () # tuple with node coordinates
for coord in a[1:]:
self.nodes[num] += (float(coord.strip()), ) # add coordinate to tuple
i += 1
return
# Parse node sets
# *NSET keyword
def get_nsets(self, lines):
for i in range(len(lines)):
if lines[i].startswith('*NSET'):
name = lines[i].split('=')[1]
self.nsets[name] = ()
while i+1<len(lines) and not lines[i+1].startswith('*'):
a = lines[i+1].split(',')
for n in a:
if len(n.strip()):
self.nsets[name] += (int(n), )
i += 1
# Parse elements composition and calculate centroid
# *ELEMENT keyword
def get_elements(self, lines):
for i in range(len(lines)):
if lines[i].startswith('*ELEMENT'):
# etype = lines[i].split('=')[1].split(',')[0] # element type
etype = lines[i].upper().split('TYPE=')[1].split(',')[0] # element type
while i+1<len(lines) and not lines[i+1].startswith('*'): # there will be no comments
a = lines[i+1].split(', ')
num = int(a[0]) # element number
self.types[num] = etype # save element type
self.elements[num] = () # tuple with element nodes
# TODO element nodes could be splitted into few lines
for n in a[1:]:
self.elements[num] += (int(n), ) # add node to tuple
x=0; y=0; z=0
for n in a[1:]: # iterate over element's node numbers
x += self.nodes[int(n)][0] # sum up x-coordinates of all nodes of the element
y += self.nodes[int(n)][1] # sum up y-coordinates of all nodes of the element
try: # 3D case
z += self.nodes[int(n)][2] # sum up z-coordinates of all nodes of the element
except:
pass
amount = len(a[1:]) # amount of nodes in element
x /= amount; y /= amount; z /= amount
self.centroids[num] = (x, y, z) # centroid coordinates 3D
i += 1
# Parse element sets
# *ELSET keyword
def get_esets(self, lines):
for i in range(len(lines)):
if lines[i].startswith('*ELSET'):
name = lines[i].split('=')[1]
self.esets[name] = ()
while i+1<len(lines) and not lines[i+1].startswith('*'):
a = lines[i+1].split(',')
for e in a:
try:
self.esets[name] += (int(e.strip()), )
except:
pass
i += 1
# Parse surfaces
# *SURFACE keyword
def get_surfaces(self, lines):
for line in lines:
if line.startswith('*SURFACE'):
name = line.upper().split('NAME=')[1].split(',')[0]
self.surfaces += (name, )
# Set additional variables
def set_additional_vars(self):
self.cx = np.array( [v[0] for k,v in sorted(self.centroids.items())] ) # centroids x-coords sorted by element number
self.cy = np.array( [v[1] for k,v in sorted(self.centroids.items())] ) # centroids y-coords sorted by element number
self.nx = np.array( [v[0] for k,v in sorted(self.nodes.items())] ) # list of x-coords sorted by node number
self.ny = np.array( [v[1] for k,v in sorted(self.nodes.items())] ) # list of y-coords sorted by node number
first_node_num = list(self.nodes.keys())[0]
for elem, nodes in sorted(self.elements.items()): # tuples of node numbers sorted by element number
if len(nodes)==3:
# Triangles consist of nodes indexes (not
# numbers), so we may subtract first_node_num
self.triangles += ((
nodes[0] - first_node_num,
nodes[1] - first_node_num,
nodes[2] - first_node_num), )
if len(nodes)==4:
quad = [] # one quadrangle - array of node coordinates couples
for n in nodes:
x = self.nodes[n][0]; y = self.nodes[n][1]
coords = np.array([[x, y]]) # coords of one node of the quadrangle
if len(quad):
quad = np.append(quad, coords, axis=0)
else:
quad = coords
if len(self.quadrangles):
self.quadrangles = np.append(self.quadrangles, [quad], axis=0)
else:
self.quadrangles = [quad]
# Initialization
def __init__(self, inp_file):
# Open and read all the .inp-file
lines = []
with open(inp_file, 'r') as f:
for i, line in enumerate(f):
if not '**' in line: # skip comments
lines.append(line.strip().upper())
self.get_nodes(lines) # parse nodes
self.get_nsets(lines) # parse node sets
self.get_elements(lines) # parse elements
self.get_esets(lines) # parse node sets
self.get_surfaces(lines) # parse surfaces
print('Total:')
print('\t{0} nodes'.format(len(self.nodes)))
print('\t{0} elements'.format(len(self.elements)))
print('\t{0} centroids'.format(len(self.centroids)))
print('\t{0} nsets'.format(len(self.nsets)))
print('\t{0} esets'.format(len(self.esets)))
self.set_additional_vars()
self.initialized = True
# Project field on mesh centroids
def project_field_on_centroids(self, fx, fy, field_values):
"""
fx - column with x-coordinates of field points
fy - column with y-coordinates of field points
field_values - column with field values in points (fx, fy)
fx, fy, field_values should be the same length
"""
triang = tri.Triangulation(fx, fy) # Delaunay triangulation from field points
interp = tri.LinearTriInterpolator(triang, field_values) # interpolation object
res = interp(self.cx, self.cy) # perform linear interpolation on centroids
res = [x if type(x)==np.float64 else np.float64(0) for x in res] # zero values outside field triangles
res = res / max(res) * max(field_values) # diminish interpolation error
return res
# Convert Calculix element type to VTK
@staticmethod
def convert_elem_type(frd_elem_type):
"""
Keep in mind that CalculiX expands shell elements
In vtk elements nodes are numbered starting from 0, not 1
For frd see http://www.dhondt.de/cgx_2.15.pdf pages 117-123 (chapter 10)
For vtk see https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf pages 9-10
_________________________________________________________________
| | |
| №№ CalculiX type | №№ VTK type |
|_______________________________|_________________________________|
| | | | | |
| 1 | C3D8 | 8 node brick | = 12 | VTK_HEXAHEDRON |
| | F3D8 | | | |
| | C3D8R | | | |
| | C3D8I | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 2 | C3D6 | 6 node wedge | = 13 | VTK_WEDGE |
| | F3D6 | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 3 | C3D4 | 4 node tet | = 10 | VTK_TETRA |
| | F3D4 | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 4 | C3D20 | 20 node brick | = 25 | VTK_QUADRATIC_HEXAHEDRON |
| | C3D20R | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 5 | C3D15 | 15 node wedge | ~ 13 | VTK_WEDGE |
|____|__________|_______________|______|__________________________|
| | | | | |
| 6 | C3D10 | 10 node tet | = 24 | VTK_QUADRATIC_TETRA |
| | C3D10T | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 7 | S3 | 3 node shell | = 5 | VTK_TRIANGLE |
| | M3D3 | | | |
| | CPS3 | | | |
| | CPE3 | | | |
| | CAX3 | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 8 | S6 | 6 node shell | = 22 | VTK_QUADRATIC_TRIANGLE |
| | M3D6 | | | |
| | CPS6 | | | |
| | CPE6 | | | |
| | CAX6 | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 9 | S4 | 4 node shell | = 9 | VTK_QUAD |
| | S4R | | | |
| | M3D4 | | | |
| | M3D4R | | | |
| | CPS4 | | | |
| | CPS4R | | | |
| | CPE4 | | | |
| | CPE4R | | | |
| | CAX4 | | | |
| | CAX4R | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 10 | S8 | 8 node shell | = 23 | VTK_QUADRATIC_QUAD |
| | S8R | | | |
| | M3D8 | | | |
| | M3D8R | | | |
| | CPS8 | | | |
| | CPS8R | | | |
| | CPE8 | | | |
| | CPE8R | | | |
| | CAX8 | | | |
| | CAX8R | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 11 | B21 | 2 node beam | = 3 | VTK_LINE |
| | B31 | | | |
| | B31R | | | |
| | T2D2 | | | |
| | T3D2 | | | |
| | GAPUNI | | | |
| | DASHPOTA | | | |
| | SPRING2 | | | |
| | SPRINGA | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| 12 | B32 | 3 node beam | = 21 | VTK_QUADRATIC_EDGE |
| | B32R | | | |
| | T3D3 | | | |
| | D | | | |
|____|__________|_______________|______|__________________________|
| | | | | |
| ?? | SPRING1 | 1 node | = 1 | VTK_VERTEX |
| | DCOUP3D | | | |
| | MASS | | | |
|____|__________|_______________|______|__________________________|
"""
# frd_elem_type : vtk_elem_type
frd2vtk_num = {
1: 12,
2: 13,
3: 10,
4: 25,
5: 13,
6: 24,
7: 5,
8: 22,
9: 9,
10: 23,
11: 3,
12: 21,
}
frd2vtk_txt = {
'C3D8':12,
'F3D8':12,
'C3D8R':12,
'C3D8I':12,
'C3D6':13,
'F3D6':13,
'C3D4':10,
'F3D4':10,
'C3D20':25,
'C3D20R':25,
'C3D15':13,
'C3D10':24,
'C3D10T':24,
'S3':5,
'M3D3':5,
'CPS3':5,
'CPE3':5,
'CAX3':5,
'S6':22,
'M3D6':22,
'CPS6':22,
'CPE6':22,
'CAX6':22,
'S4':9,
'S4R':9,
'M3D4':9,
'M3D4R':9,
'CPS4':9,
'CPS4R':9,
'CPE4':9,
'CPE4R':9,
'CAX4':9,
'CAX4R':9,
'S8':23,
'S8R':23,
'M3D8':23,
'M3D8R':23,
'CPS8':23,
'CPS8R':23,
'CPE8':23,
'CPE8R':23,
'CAX8':23,
'CAX8R':23,
'B21':3,
'B31':3,
'B31R':3,
'T2D2':3,
'T3D2':3,
'GAPUNI':3,
'DASHPOTA':3,
'SPRING2':3,
'SPRINGA':3,
'B32':21,
'B32R':21,
'T3D3':21,
'D':21,
'SPRING1':1,
'DCOUP3D':1,
'MASS':1,
}
if frd_elem_type in frd2vtk_num:
return frd2vtk_num[frd_elem_type]
else:
if frd_elem_type in frd2vtk_txt:
return frd2vtk_txt[frd_elem_type]
else:
return 0