-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathinference.py
207 lines (165 loc) · 7.62 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import sys
import os
os.environ["CURL_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt" # A workaround in case this happens: https://github.com/mapbox/rasterio/issues/1289
import time
import datetime
import argparse
import numpy as np
import pandas as pd
import rasterio
import torch
import torch.nn.functional as F
import models
from dataloaders.TileDatasets import TileInferenceDataset
import utils
NUM_WORKERS = 4
CHIP_SIZE = 256
PADDING = 128
assert PADDING % 2 == 0
HALF_PADDING = PADDING//2
CHIP_STRIDE = CHIP_SIZE - PADDING
parser = argparse.ArgumentParser(description='DFC2021 model inference script')
parser.add_argument('--input_fn', type=str, required=True, help='The path to a CSV file containing three columns -- "image_fn", "label_fn", and "group" -- that point to tiles of imagery and labels as well as which "group" each tile is in.')
parser.add_argument('--model_fn', type=str, required=True, help='Path to the model file to use.')
parser.add_argument('--output_dir', type=str, required=True, help='The path to output the model predictions as a GeoTIFF. Will fail if this file already exists.')
parser.add_argument('--overwrite', action="store_true", help='Flag for overwriting `--output_dir` if that directory already exists.')
parser.add_argument('--gpu', type=int, default=0, help='The ID of the GPU to use')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size to use during inference.')
parser.add_argument('--save_4lc', action="store_true", help='Flag to convert NLCD predictions to 4-class land cover predictions.')
parser.add_argument('--save_soft', action="store_true", help='Flag that enables saving the predicted per class probabilities in addition to the "hard" class predictions.')
parser.add_argument('--model', default='unet',
choices=(
'unet',
'fcn',
'hrnet'
),
help='Model to use'
)
args = parser.parse_args()
def main():
print("Starting DFC2021 model inference script at %s" % (str(datetime.datetime.now())))
#-------------------
# Setup
#-------------------
assert os.path.exists(args.input_fn)
assert os.path.exists(args.model_fn)
if os.path.isfile(args.output_dir):
print("A file was passed as `--output_dir`, please pass a directory!")
return
if os.path.exists(args.output_dir) and len(os.listdir(args.output_dir)) > 0:
if args.overwrite:
print("WARNING! The output directory, %s, already exists, we might overwrite data in it!" % (args.output_dir))
else:
print("The output directory, %s, already exists and isn't empty. We don't want to overwrite and existing results, exiting..." % (args.output_dir))
return
else:
print("The output directory doesn't exist or is empty.")
os.makedirs(args.output_dir, exist_ok=True)
if torch.cuda.is_available():
device = torch.device("cuda:%d" % args.gpu)
else:
print("WARNING! Torch is reporting that CUDA isn't available, exiting...")
return
#-------------------
# Load model
#-------------------
if args.model == "unet":
model = models.get_unet()
elif args.model == "fcn":
model = models.get_fcn()
elif args.model == "hrnet":
model = models.get_hrnet()
else:
raise ValueError("Invalid model")
model.load_state_dict(torch.load(args.model_fn))
model = model.to(device)
#-------------------
# Run on each line in the input
#-------------------
input_dataframe = pd.read_csv(args.input_fn)
image_fns = input_dataframe["image_fn"].values
groups = input_dataframe["group"].values
for image_idx in range(len(image_fns)):
tic = time.time()
image_fn = image_fns[image_idx]
group = groups[image_idx]
print("(%d/%d) Processing %s" % (image_idx, len(image_fns), image_fn), end=" ... ")
#-------------------
# Load input and create dataloader
#-------------------
def image_transforms(img):
if group == 0:
img = (img - utils.NAIP_2013_MEANS) / utils.NAIP_2013_STDS
elif group == 1:
img = (img - utils.NAIP_2017_MEANS) / utils.NAIP_2017_STDS
else:
raise ValueError("group not recognized")
img = np.rollaxis(img, 2, 0).astype(np.float32)
img = torch.from_numpy(img)
return img
with rasterio.open(image_fn) as f:
input_width, input_height = f.width, f.height
input_profile = f.profile.copy()
dataset = TileInferenceDataset(image_fn, chip_size=CHIP_SIZE, stride=CHIP_STRIDE, transform=image_transforms, verbose=False)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=NUM_WORKERS,
pin_memory=True,
)
#-------------------
# Run model and organize output
#-------------------
output = np.zeros((len(utils.NLCD_CLASSES), input_height, input_width), dtype=np.float32)
kernel = np.ones((CHIP_SIZE, CHIP_SIZE), dtype=np.float32)
kernel[HALF_PADDING:-HALF_PADDING, HALF_PADDING:-HALF_PADDING] = 5
counts = np.zeros((input_height, input_width), dtype=np.float32)
for i, (data, coords) in enumerate(dataloader):
data = data.to(device)
with torch.no_grad():
t_output = model(data)
t_output = F.softmax(t_output, dim=1).cpu().numpy()
for j in range(t_output.shape[0]):
y, x = coords[j]
output[:, y:y+CHIP_SIZE, x:x+CHIP_SIZE] += t_output[j] * kernel
counts[y:y+CHIP_SIZE, x:x+CHIP_SIZE] += kernel
output = output / counts
output_hard = output.argmax(axis=0).astype(np.uint8)
#-------------------
# Save output
#-------------------
output_profile = input_profile.copy()
output_profile["driver"] = "GTiff"
output_profile["dtype"] = "uint8"
output_profile["count"] = 1
output_profile["nodata"] = 0
output_fn = image_fn.split("/")[-1] # something like "546_naip-2013.tif"
output_fn = output_fn.replace("naip", "predictions")
output_fn = os.path.join(args.output_dir, output_fn)
if args.save_4lc:
output_profile["nodata"] = 4
output_fn = output_fn.replace("_predictions-", "_lcpredictions-")
output_hard = utils.NLCD_IDX_TO_REDUCED_LC_MAP[output_hard].astype(np.uint8)
with rasterio.open(output_fn, "w", **output_profile) as f:
f.write(output_hard, 1)
f.write_colormap(1, utils.LC4_CLASS_COLORMAP)
else:
with rasterio.open(output_fn, "w", **output_profile) as f:
f.write(output_hard, 1)
f.write_colormap(1, utils.NLCD_IDX_COLORMAP)
if args.save_soft:
output = output / output.sum(axis=0, keepdims=True)
output = (output * 255).astype(np.uint8)
output_profile = input_profile.copy()
output_profile["driver"] = "GTiff"
output_profile["dtype"] = "uint8"
output_profile["count"] = len(utils.NLCD_CLASSES)
del output_profile["nodata"]
output_fn = image_fn.split("/")[-1] # something like "546_naip-2013.tif"
output_fn = output_fn.replace("naip", "predictions-soft")
output_fn = os.path.join(args.output_dir, output_fn)
with rasterio.open(output_fn, "w", **output_profile) as f:
f.write(output)
print("finished in %0.4f seconds" % (time.time() - tic))
if __name__ == "__main__":
main()