-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
59 lines (54 loc) · 1.97 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
from cog import BasePredictor, Input, Path
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from huggingface_hub import hf_hub_download
import gradio as gr
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
def inference(image, net):
orig_image = Image.fromarray(image)
w,h = orig_im_size = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
im_tensor = torch.unsqueeze(im_tensor,0)
im_tensor = torch.divide(im_tensor,255.0)
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
if torch.cuda.is_available():
im_tensor=im_tensor.cuda()
result=net(im_tensor)
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
new_im.paste(orig_image, mask=pil_im)
return new_im
class Predictor(BasePredictor):
def setup(self) -> None:
self.net=BriaRMBG()
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
if torch.cuda.is_available():
self.net.load_state_dict(torch.load(model_path))
self.net=self.net.cuda()
else:
self.net.load_state_dict(torch.load(model_path,map_location="cpu"))
self.net.eval()
def predict(
self,
input_image: Path = Input(description="Input Image"),
) -> Path:
output_image = inference(input_image, self.net)
return Path(output_image)