forked from ICRC-Models/HHCoM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathode4xtra.m
74 lines (67 loc) · 2.44 KB
/
ode4xtra.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
function [T, Y , varargout] = ode4xtra(odefun , tspan , y0 , varargin)
format('long');
%ODE4 Solve differential equations with a non-adaptive method of order 4.
% Y = ODE4(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates
% the system of differential equations y' = f(t,y) by stepping from T0 to
% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
% The vector Y0 is the initial conditions at T0. Each row in the solution
% array Y corresponds to a time specified in TSPAN.
%
% Y = ODE4(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters
% P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).
%
% This is a non-adaptive solver. The step sequence is determined by TSPAN
% but the derivative function ODEFUN is evaluated multiple times per step.
% The solver implements the classical Runge-Kutta method of order 4.
%
% Example
% tspan = 0:0.1:20;
% y = ode4(@vdp1,tspan,[2 0]);
% plot(tspan,y(:,1));
% solves the system y' = vdp1(t,y) with a constant step size of 0.1,
% and plots the first component of the solution.
%
if ~isnumeric(tspan)
error('TSPAN should be a vector of integration steps.');
end
if ~isnumeric(y0)
error('Y0 should be a vector of initial conditions.');
end
h = diff(tspan);
if any(sign(h(1))*h <= 0)
error('Entries of TSPAN are not in order.')
end
try
f0 = feval(odefun,tspan(1),y0,varargin{:});
catch
msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];
error(msg);
end
y0 = y0(:); % Make a column vector.
if ~isequal(size(y0),size(f0))
y0 = y0'; % try transposing input vector
end
if ~isequal(size(y0),size(f0))
error('Inconsistent sizes of Y0 and f(t0,y0).');
end
neq = length(y0);
N = length(tspan);
Y = zeros(neq,N);
F = zeros(neq,4);
Y(:,1) = y0;
for i = 2:N
ti = tspan(i-1);
hi = h(i-1);
yi = Y(:,i-1);
[F(: , 1) , varout1] = feval(odefun,ti,yi,varargin{:});
[F(: , 2) , varout2] = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});
[F(: , 3) , varout3] = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:});
[F(: , 4) , varout4] = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});
Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));
for j = 1 : length(varout1)
varargout{j} = hi / 6 .* (varout1{j} + 2 * varout2{j} ...
+ 2 * varout3{j} + varout4{j});
end
end
Y = Y.';
T = tspan;