-
Notifications
You must be signed in to change notification settings - Fork 24
/
setup.py
244 lines (205 loc) · 7.54 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import torch
from pathlib import Path
from setuptools import setup, find_packages
from distutils.sysconfig import get_python_lib
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
if "CC" not in os.environ:
os.environ["CC"] = "g++"
if "CXX" not in os.environ:
os.environ["CXX"] = "g++"
AUTOAWQ_KERNELS_VERSION = "0.0.9"
PYPI_BUILD = os.getenv("PYPI_BUILD", "0") == "1"
COMPUTE_CAPABILITIES = os.getenv("COMPUTE_CAPABILITIES", "75,80,86,87,89,90")
TORCH_VERSION = str(os.getenv("TORCH_VERSION", None) or torch.__version__).split('+', maxsplit=1)[0]
CUDA_VERSION = os.getenv("CUDA_VERSION", None) or torch.version.cuda
ROCM_VERSION = os.environ.get("ROCM_VERSION", None) or torch.version.hip
if not PYPI_BUILD:
# only adding CUDA/ROCM version if we are not building for PyPI to comply with PEP 440
if CUDA_VERSION:
CUDA_VERSION = "".join(CUDA_VERSION.split("."))[:3]
AUTOAWQ_KERNELS_VERSION += f"+cu{CUDA_VERSION}"
elif ROCM_VERSION:
ROCM_VERSION = "".join(ROCM_VERSION.split("."))[:3]
AUTOAWQ_KERNELS_VERSION += f"+rocm{ROCM_VERSION}"
else:
raise RuntimeError(
"Your system must have either Nvidia or AMD GPU to build this package."
)
print(f"Building AutoAWQ Kernels version {AUTOAWQ_KERNELS_VERSION}")
common_setup_kwargs = {
"version": AUTOAWQ_KERNELS_VERSION,
"name": "autoawq_kernels",
"author": "Casper Hansen",
"license": "MIT",
"python_requires": ">=3.8.0",
"description": "AutoAWQ Kernels implements the AWQ kernels.",
"long_description": (Path(__file__).parent / "README.md").read_text(
encoding="UTF-8"
),
"long_description_content_type": "text/markdown",
"url": "https://github.com/casper-hansen/AutoAWQ_kernels",
"keywords": ["awq", "autoawq", "quantization", "transformers"],
"platforms": ["linux", "windows"],
"classifiers": [
"Environment :: GPU :: NVIDIA CUDA :: 11.8",
"Environment :: GPU :: NVIDIA CUDA :: 12",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: C++",
],
}
requirements = [
f"torch>={TORCH_VERSION}",
]
def get_include_dirs():
include_dirs = []
if CUDA_VERSION:
conda_cuda_include_dir = os.path.join(
get_python_lib(), "nvidia/cuda_runtime/include"
)
if os.path.isdir(conda_cuda_include_dir):
include_dirs.append(conda_cuda_include_dir)
this_dir = os.path.dirname(os.path.abspath(__file__))
include_dirs.append(this_dir)
return include_dirs
def get_generator_flag():
generator_flag = []
# if CUDA_VERSION:
torch_dir = torch.__path__[0]
if os.path.exists(
os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")
):
generator_flag = ["-DOLD_GENERATOR_PATH"]
return generator_flag
def get_compute_capabilities(
compute_capabilities=set(map(int, COMPUTE_CAPABILITIES.split(",")))
):
capability_flags = []
if CUDA_VERSION:
# Collect the compute capabilities of all available CUDA GPUs
for i in range(torch.cuda.device_count()):
major, minor = torch.cuda.get_device_capability(i)
cc = major * 10 + minor
if cc < 75:
raise RuntimeError(
"GPUs with compute capability less than 7.5 are not supported."
)
# Figure out compute capability
for cap in compute_capabilities:
capability_flags += ["-gencode", f"arch=compute_{cap},code=sm_{cap}"]
return capability_flags
def get_extra_compile_args(arch_flags, generator_flags):
extra_compile_args = {}
if os.name == "nt" and CUDA_VERSION:
include_arch = os.getenv("INCLUDE_ARCH", "1") == "1"
# Relaxed args on Windows
if include_arch:
extra_compile_args = {"nvcc": ["-allow-unsupported-compiler"] + arch_flags}
elif CUDA_VERSION:
extra_compile_args = {
"cxx": ["-g", "-O3", "-fopenmp", "-lgomp", "-std=c++17", "-DENABLE_BF16"],
"nvcc": [
"-O3",
"-std=c++17",
"-DENABLE_BF16",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
]
+ arch_flags
+ generator_flags,
}
return extra_compile_args
def get_extra_link_args():
extra_link_args = []
if os.name == "nt" and CUDA_VERSION:
cuda_path = os.environ.get("CUDA_PATH", None)
extra_link_args = ["-L", f"{cuda_path}/lib/x64/cublas.lib"]
return extra_link_args
include_dirs = get_include_dirs()
extra_link_args = get_extra_link_args()
generator_flags = get_generator_flag()
arch_flags = get_compute_capabilities()
extra_compile_args = get_extra_compile_args(arch_flags, generator_flags)
extensions = []
if CUDA_VERSION:
# contain un-hipifiable inline PTX
extensions.append(
CUDAExtension(
"awq_ext",
[
"awq_ext/pybind_awq.cpp",
"awq_ext/quantization/gemm_cuda_gen.cu",
"awq_ext/layernorm/layernorm.cu",
"awq_ext/position_embedding/pos_encoding_kernels.cu",
"awq_ext/quantization/gemv_cuda.cu",
"awq_ext/vllm/moe_alig_block.cu",
"awq_ext/vllm/activation.cu",
"awq_ext/vllm/topk_softmax_kernels.cu",
],
extra_compile_args=extra_compile_args,
)
)
# only compatible with ampere
arch_flags = get_compute_capabilities({80, 86, 89, 90})
extra_compile_args_v2 = get_extra_compile_args(arch_flags, generator_flags)
extensions.append(
CUDAExtension(
"awq_v2_ext",
[
"awq_ext/pybind_awq_v2.cpp",
"awq_ext/quantization_new/gemv/gemv_cuda.cu",
"awq_ext/quantization_new/gemm/gemm_cuda.cu",
],
extra_compile_args=extra_compile_args_v2,
)
)
extensions.append(
CUDAExtension(
"exl_ext",
[
"awq_ext/exllama/exllama_ext.cpp",
"awq_ext/exllama/cuda_buffers.cu",
"awq_ext/exllama/cuda_func/column_remap.cu",
"awq_ext/exllama/cuda_func/q4_matmul.cu",
"awq_ext/exllama/cuda_func/q4_matrix.cu",
],
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
)
)
extensions.append(
CUDAExtension(
"exlv2_ext",
[
"awq_ext/exllamav2/ext.cpp",
"awq_ext/exllamav2/cuda/q_matrix.cu",
"awq_ext/exllamav2/cuda/q_gemm.cu",
],
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
)
)
additional_setup_kwargs = {
"ext_modules": extensions,
"cmdclass": {"build_ext": BuildExtension},
}
common_setup_kwargs.update(additional_setup_kwargs)
setup(
packages=find_packages(),
install_requires=requirements,
include_dirs=include_dirs,
**common_setup_kwargs,
)