-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataprocessing.py
121 lines (100 loc) · 4.55 KB
/
dataprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import matplotlib.pyplot as plt
import pandas as pd
import math
import numpy as np
from scipy import stats
from queueing.probabilities import *
data = pd.read_csv("data/500-4.txt", sep="\t")
# example1 = data[data["SIM_TIME"] == 500]
simulations = 500
simtimes = [5, 50, 150, 500, 1000]
# for i in [1, 2, 4]:
# data = pd.read_csv(f"data/500-{i}.txt", sep="\t")
# example = data[data["SIM_TIME"] == simtime]
st_5 = []
st_50 = []
st_150 = []
st_500 = []
st_1000 = []
sim_5 = []
sim_50 = []
sim_150 = []
sim_500 = []
sim_1000 = []
expected = []
for i in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.975]:
expected.append(expw(1, 2, i))
for simtime in simtimes:
data = pd.read_csv(f"data/1000-2.txt", sep="\t")
example = data[data["SIM_TIME"] == simtime]
for r in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.975]:
if simtime == 5:
sim_5.append(example[example['RHO'] == r]['AVG_WAIT'].mean())
st_5.append(1.96 * example[example['RHO'] == r]['AVG_WAIT'].std() /
math.sqrt(simulations))
elif simtime == 50:
sim_50.append(example[example['RHO'] == r]['AVG_WAIT'].mean())
st_50.append(1.96 * example[example['RHO'] == r]['AVG_WAIT'].std() /
math.sqrt(simulations))
elif simtime == 150:
sim_150.append(example[example['RHO'] == r]['AVG_WAIT'].mean())
st_150.append(1.96 * example[example['RHO'] == r]['AVG_WAIT'].std() /
math.sqrt(simulations))
elif simtime == 500:
sim_500.append(example[example['RHO'] == r]['AVG_WAIT'].mean())
st_500.append(1.96 * example[example['RHO'] == r]['AVG_WAIT'].std() /
math.sqrt(simulations))
else:
sim_1000.append(example[example['RHO'] == r]['AVG_WAIT'].mean())
st_1000.append(1.96 * example[example['RHO'] == r]['AVG_WAIT'].std() /
math.sqrt(simulations))
rhos = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.975]
fig = plt.figure(facecolor='w')
ax = fig.add_subplot(111, facecolor='whitesmoke', axisbelow=True)
ax.plot(rhos, sim_5, 'cornflowerblue', alpha=1, lw=2, label='Simtime=5')
ax.plot(rhos, sim_50, 'deeppink', alpha=0.8, lw=2, label='Simtime=50')
ax.plot(rhos, sim_150, 'springgreen', alpha=0.6, lw=2, label='Simtime=150')
ax.plot(rhos, sim_500, 'black', alpha=0.6, lw=2, label='Simtime=500')
ax.plot(rhos, sim_1000, 'grey', alpha=0.6, lw=2, label='Simtime=1000')
ax.plot(rhos, expected, 'black', alpha=1, lw=2, label='Expected Waiting Time')
ax.fill_between(rhos, [a - b for a, b in zip(sim_5, st_5)], [a + b for a, b in zip(sim_5, st_5)], color='cornflowerblue', alpha=.1)
ax.fill_between(rhos, [a - b for a, b in zip(sim_50, st_50)], [a + b for a, b in zip(sim_50, st_50)], color='deeppink', alpha=.1)
ax.fill_between(rhos, [a - b for a, b in zip(sim_150, st_150)], [a + b for a, b in zip(sim_150, st_150)], color='springgreen', alpha=.1)
ax.fill_between(rhos, [a - b for a, b in zip(sim_500, st_500)], [a + b for a, b in zip(sim_500, st_500)], color='black', alpha=.1)
ax.fill_between(rhos, [a - b for a, b in zip(sim_1000, st_1000)], [a + b for a, b in zip(sim_1000, st_1000)], color='grey', alpha=.1)
ax.set_xlabel(r'$\rho$', fontsize=12)
ax.set_ylabel('Waiting time / time unit', fontsize=12)
ax.set_title('Mean waiting time', fontsize = 14)
ax.yaxis.set_tick_params(length=0)
ax.xaxis.set_tick_params(length=0)
ax.grid(b=True, which='major', c='w', lw=2, ls='-')
legend = ax.legend()
legend.get_frame().set_alpha(0.5)
for spine in ('top', 'right', 'bottom', 'left'):
ax.spines[spine].set_visible(False)
plt.savefig("plots/simtimes-exp.png", dpi=300)
plt.show()
# plt.title(f"Mean waiting time (Simtime={simtime})", fontsize=16)
# plt.legend()
# plt.grid(True)
# plt.xlabel(r"$\rho$")
# plt.ylabel("Waiting time / time unit")
# plt.savefig("plots/simtimes.png")
# plt.show()
print("DONE")
print("\n START MEAN, STDEV, CONF INT")
for i in [1,2,4]:
print(f'Server(s): {i}')
data = pd.read_csv(f"data/500-{i}.txt", sep="\t")
example = data[data["SIM_TIME"] == 150]
example1 = data[data["SIM_TIME"] == 500]
ex = example[example['RHO'] == 0.1]['AVG_WAIT']
ex2 = example1[example1['RHO'] == 0.1]['AVG_WAIT']
ex_9 = example[example['RHO'] == 0.9]['AVG_WAIT']
ex2_9 = example1[example1['RHO'] == 0.9]['AVG_WAIT']
print("\nMEAN 150, 500, rho 0.1, rho 0.9")
print(ex.mean(), ex2.mean())
print(ex_9.mean(), ex2_9.mean())
print("\nSTDEV 150, 500, rho 0.1, rho 0.9")
print(ex.std(), ex2.std())
print(ex_9.std(), ex2_9.std())