-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfit_transformer.py
155 lines (130 loc) · 4.09 KB
/
fit_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""Fit a transformer model"""
import random
import logging
from datetime import datetime
import numpy as np
import torch
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.metrics import mean_squared_error
from transformer.Optim import ScheduledOptim
from sacred import Experiment
from bots import TransformerBot
from dataset import read_dataset
from io_utils import export_validation, export_test
logging.basicConfig(level=logging.WARNING)
ex = Experiment('Transformer')
ex.add_source_file("preprocess.py")
ex.add_source_file("prepare_seq_data.py")
@ex.named_config
def no_tf_2l():
batch_size = 128
model_details = {
"odrop": 0.25,
"edrop": 0.25,
"hdrop": 0.1,
"d_model": 128,
"d_inner_hid": 256,
"n_layers": 2,
"n_head": 4,
"propagate": False
}
@ex.config
def no_tf_2l_256():
batch_size = 128
model_details = {
"odrop": 0.25,
"edrop": 0.25,
"hdrop": 0.25,
"d_model": 256,
"d_inner_hid": 256,
"n_layers": 2,
"n_head": 4,
"propagate": False
}
@ex.named_config
def no_tf_1l():
batch_size = 128
model_details = {
"odrop": 0.25,
"edrop": 0.25,
"hdrop": 0.1,
"d_model": 128,
"d_inner_hid": 256,
"n_layers": 1,
"n_head": 8,
"propagate": False
}
@ex.named_config
def no_tf_3l():
batch_size = 128
model_details = {
"odrop": 0.25,
"edrop": 0.25,
"hdrop": 0.1,
"d_model": 128,
"d_inner_hid": 256,
"n_layers": 3,
"n_head": 2,
"propagate": False
}
@ex.automain
def main(batch_size, model_details, seed):
train_dataset, val_dataset, test_dataset = read_dataset()
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
batches_per_epoch = len(train_dataset) // batch_size
# Start Training
bot = TransformerBot(
train_dataset, test_dataset, val_dataset=val_dataset,
n_layers=model_details.get("n_layers", 6),
n_head=model_details.get("n_head", 8),
d_model=model_details.get("d_model", 512),
d_inner_hid=model_details.get("d_inner_hid", 1024),
d_k=model_details.get("d_k", 32),
d_v=model_details.get("d_v", 32),
propagate=model_details.get("propagate", False),
hdrop=model_details.get("hdrop", 0),
edrop=model_details.get("edrop", 0),
odrop=model_details.get("odrop", 0),
avg_window=500,
clip_grad=10,
tf_warmup=int(batches_per_epoch),
tf_decay=0.1 ** (1 / 6),
tf_steps=batches_per_epoch // 200 * 100,
tf_min=0.1
)
param_groups = [
{
"params": bot.model.get_trainable_parameters(), "lr": 5e-4
}
]
optimizer = optim.Adam(param_groups)
scheduler = ReduceLROnPlateau(
optimizer, factor=0.25, patience=5, cooldown=0,
threshold=2e-4,
min_lr=[x["lr"] * 0.25 ** 2 for x in param_groups]
)
# optimizer = ScheduledOptim(
# optim.Adam(
# bot.model.get_trainable_parameters(), betas=(0.9, 0.98), eps=1e-09),
# model_details.get("d_model", 512),
# model_details.get("train_warmup", 2000))
# scheduler = None
_ = bot.train(
optimizer, batch_size=batch_size, n_epochs=20,
seed=seed, log_interval=batches_per_epoch // 50,
snapshot_interval=batches_per_epoch // 50 * 5,
early_stopping_cnt=15,
scheduler=scheduler)
timestamp = datetime.now().strftime("%Y%m%d_%H%M")
val_pred = bot.predict_avg(is_test=False, k=8).cpu().numpy()
weights = val_dataset.series_i[:, 0, -1] * .25 + 1
score = mean_squared_error(val_dataset.y, val_pred, sample_weight=weights)
export_validation("cache/preds/val/{}_{:.6f}_{}.csv".format(
bot.name, score, timestamp), val_pred)
test_pred = bot.predict_avg(is_test=True, k=8).cpu().numpy()
export_test("cache/preds/test/{}_{:.6f}_{}.csv".format(
bot.name, score, timestamp), test_pred)
bot.logger.info("Score: {:.6f}".format(score))
return score