-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdemo_view_fig4.m
76 lines (65 loc) · 2.75 KB
/
demo_view_fig4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% =====================
% Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces (MEKT)
% =====================
% Author: Wen Zhang and Dongrui Wu
% Date: Oct. 9, 2019
% E-mail: wenz@hust.edu.cn
clc; clear all; close all; warning off;
% Load datasets:
% 9 subjects, each 22*750*144 (channels*trails*samples)
root = 'data\MI2\';
listing = dir([root '*.mat']);
addpath('lib');
fnum = length(listing);
ref = {'riemann','logeuclid','euclid'};
BCA = zeros(fnum,fnum-1);
for tr=1
% Single target data
load([root listing(tr).name])
Xtr = x; Yt = y;
tes = 1:fnum; tes(tr) = [];
for te=2
% Single source data
load([root listing(tes(te)).name])
Xsr = x; Ys = y;
idsP=Yt==1; idsN=Yt==0;
Cs = centroid_align(Xsr,ref{1});
Ct = centroid_align(Xtr,ref{1});
ns = length(Ys); c=unique(Ys);
sizes0 = 2*ones([length(find(Ys==c(1))),1]);
sizes1 = 10*ones([length(find(Ys==c(2))),1]);
sizet0 = 2*ones([length(find(Yt==c(1))),1]);
sizet1 = 10*ones([length(find(Yt==c(2))),1]);
% Logarithmic mapping
Xs = logmap(Cs,'MI'); % dimension: 253*144 (features*samples)
Xt = logmap(Ct,'MI');
%% MEKT
options.d = 10; % subspace bases
options.T = 5; % iterations, default=5
options.alpha= 0.01; % the parameter for source discriminability
options.beta = 0.1; % the parameter for target locality, default=0.1
options.rho = 20; % the parameter for subspace discrepancy
options.clf = 'lda'; % the string for base classifier, 'lda' or 'svm'
Cls = [];
[Zs, Zt] = MEKT(Xs, Xt, Ys, Cls, options);
Ypre = slda(Zt,Zs,Ys);
BCA(tr,te)=mean(Yt==Ypre);
% Visualization MEKT
ftsne = tsne([Zs';Zt']);
figure; set(gcf,'position',[300, 200, 800, 400])
ts=ftsne(1:ns,:); ts0=ts(Ys==c(1),:); ts1=ts(Ys==c(2),:);
tt=ftsne(ns+1:end,:); tt0=tt(Yt==c(1),:); tt1=tt(Yt==c(2),:);
scatter(ts0(:,1),ts0(:,2),sizes0,'b','filled'), hold on
scatter(ts1(:,1),ts1(:,2),sizes1,'b*'), hold on
scatter(tt0(:,1),tt0(:,2),sizet0,'r','filled'), hold on
scatter(tt1(:,1),tt1(:,2),sizet1,'r*'), hold off
xlabel('z1'); ylabel('z2'); title('MEKT-R')
set(gca,'FontSize', 14, 'Fontname', 'Times New Roman');
box on
axis square
str = cellstr(['Source class 1';'Source class 2';'Target class 1';'Target class 2']);
legend(str,'location','EastOutside','fontsize', 14,'Fontname','Times New Roman');
end
end
disp(['MI2, S2-->S1: ', num2str(BCA(tr,te)*100)])
rmpath('lib');