forked from mit-han-lab/llm-awq
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopt_example.sh
25 lines (21 loc) · 950 Bytes
/
opt_example.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
MODEL=opt-6.7b
# run AWQ search (optional; we provided the pre-computed results)
python -m awq.entry --model_path /dataset/opt/$MODEL \
--w_bit 4 --q_group_size 128 \
--run_awq --dump_awq awq_cache/$MODEL-w4-g128.pt
# evaluate the AWQ quantize model (simulated pseudo quantization)
python -m awq.entry --model_path /dataset/opt/$MODEL \
--tasks wikitext \
--w_bit 4 --q_group_size 128 \
--load_awq awq_cache/$MODEL-w4-g128.pt \
--q_backend fake
# generate real quantized weights (w4)
python -m awq.entry --model_path /dataset/opt/$MODEL \
--w_bit 4 --q_group_size 128 \
--load_awq awq_cache/$MODEL-w4-g128.pt \
--q_backend real --dump_quant quant_cache/$MODEL-w4-g128-awq.pt
# load and evaluate the real quantized model (smaller gpu memory usage)
python -m awq.entry --model_path /dataset/opt/$MODEL \
--tasks wikitext \
--w_bit 4 --q_group_size 128 \
--load_quant quant_cache/$MODEL-w4-g128-awq.pt