forked from wlsdml1114/DDSP-SVC-KOR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solver.py
148 lines (116 loc) · 4.56 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import time
import numpy as np
import torch
from logger.saver import Saver
from logger import utils
def test(args, model, loss_func, loader_test, saver):
print(' [*] testing...')
model.eval()
# losses
test_loss = 0.
test_loss_rss = 0.
test_loss_uv = 0.
# intialization
num_batches = len(loader_test)
rtf_all = []
# run
with torch.no_grad():
for bidx, data in enumerate(loader_test):
fn = data['name'][0]
print('--------')
print('{}/{} - {}'.format(bidx, num_batches, fn))
# unpack data
for k in data.keys():
if k != 'name':
data[k] = data[k].to(args.device)
print('>>', data['name'][0])
# forward
st_time = time.time()
signal, _, (s_h, s_n) = model(data['units'], data['f0'], data['volume'], data['spk_id'])
ed_time = time.time()
# crop
min_len = np.min([signal.shape[1], data['audio'].shape[1]])
signal = signal[:,:min_len]
data['audio'] = data['audio'][:,:min_len]
# RTF
run_time = ed_time - st_time
song_time = data['audio'].shape[-1] / args.data.sampling_rate
rtf = run_time / song_time
print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
rtf_all.append(rtf)
# loss
loss = loss_func(signal, data['audio'])
test_loss += loss.item()
# log
saver.log_audio({fn+'/gt.wav': data['audio'], fn+'/pred.wav': signal})
# report
test_loss /= num_batches
# check
print(' [test_loss] test_loss:', test_loss)
print(' Real Time Factor', np.mean(rtf_all))
return test_loss
def train(args, initial_global_step, model, optimizer, loss_func, loader_train, loader_test):
# saver
saver = Saver(args, initial_global_step=initial_global_step)
# model size
params_count = utils.get_network_paras_amount({'model': model})
saver.log_info('--- model size ---')
saver.log_info(params_count)
# run
num_batches = len(loader_train)
model.train()
saver.log_info('======= start training =======')
for epoch in range(args.train.epochs):
for batch_idx, data in enumerate(loader_train):
saver.global_step_increment()
optimizer.zero_grad()
# unpack data
for k in data.keys():
if k != 'name':
data[k] = data[k].to(args.device)
# forward
signal, _, (s_h, s_n) = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'], infer=False)
# loss
loss = loss_func(signal, data['audio'])
# handle nan loss
if torch.isnan(loss):
raise ValueError(' [x] nan loss ')
else:
# backpropagate
loss.backward()
optimizer.step()
# log loss
if saver.global_step % args.train.interval_log == 0:
saver.log_info(
'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | loss: {:.3f} | time: {} | step: {}'.format(
epoch,
batch_idx,
num_batches,
args.env.expdir,
args.train.interval_log/saver.get_interval_time(),
loss.item(),
saver.get_total_time(),
saver.global_step
)
)
saver.log_value({
'train/loss': loss.item()
})
# validation
if saver.global_step % args.train.interval_val == 0:
optimizer_save = optimizer if args.train.save_opt else None
# save latest
saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
# run testing set
test_loss = test(args, model, loss_func, loader_test, saver)
# log loss
saver.log_info(
' --- <validation> --- \nloss: {:.3f}. '.format(
test_loss,
)
)
saver.log_value({
'validation/loss': test_loss
})
model.train()