forked from YEONDOO-swm/yeondoo-fastapi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandlers.py
348 lines (268 loc) · 12.2 KB
/
handlers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from fastapi import Query, HTTPException
import arxiv
import chromadb
from chromadb.utils import embedding_functions
from utils import *
import os
from prompts import *
import openai
from fastapi.responses import StreamingResponse
from ports import *
from typing import Annotated
import requests
import re
import httpx
from database import *
from collections import defaultdict
import boto3
Google_API_KEY = os.environ["GOOGLE_API_KEY"]
Google_SEARCH_ENGINE_ID = os.environ["GOOGLE_SEARCH_ENGINE_ID"]
def get_papers(query : str = Query(None,description = "검색 키워드")):
token_limit_exceeded = False
papers = []
search_query = "site:arxiv.org " + query
url = f"https://www.googleapis.com/customsearch/v1?key={Google_API_KEY}&cx={Google_SEARCH_ENGINE_ID}&q={search_query}&start=0"
res = requests.get(url).json()
try:
search_result = res.get("items")
pattern = r'^\d+\.\d+$'
paper_list = []
for i in range(len(search_result)):
paper_id = search_result[i]['link'].split('/')[-1]
if paper_id in paper_list:
continue
if bool(re.match(pattern, paper_id)):
paper_list.append(search_result[i]['link'].split('/')[-1])
search = arxiv.Search(
id_list = paper_list,
max_results = len(paper_list),
sort_by = arxiv.SortCriterion.Relevance,
sort_order = arxiv.SortOrder.Descending
)
for result in search.results():
paper_info={}
paper_info["paperId"] = result.entry_id.split('/')[-1][:-2]
paper_info["year"] = int(result.published.year)
paper_info["title"] = result.title
paper_info["authors"] = [author.name for author in result.authors]
paper_info["summary"] = result.summary
paper_info["url"] = result.entry_id
paper_info["categories"] = result.categories
papers.append(paper_info)
except:
token_limit_exceeded = True
search = arxiv.Search(
query = "'"+query+"'",
max_results = 20,#50개당 1초 소요
sort_by = arxiv.SortCriterion.Relevance,
sort_order = arxiv.SortOrder.Descending
)
for result in search.results():
paper_info={}
paper_info["paperId"] = result.entry_id.split('/')[-1][:-2]
paper_info["year"] = int(result.published.year)
paper_info["title"] = result.title
paper_info["authors"] = [author.name for author in result.authors]
paper_info["summary"] = result.summary
paper_info["url"] = result.entry_id
paper_info["categories"] = result.categories
papers.append(paper_info)
return {
"papers":papers,
"token_limit_exceeded" : token_limit_exceeded,
}
async def get_chat(paperId : str = Query(None,description = "논문 ID"),
userPdf : bool = Query(None,description = "유저 pdf 업로드 여부"),
):
pattern = r"/"
replacement = "."
emb_paperId = re.sub(pattern, replacement, paperId)
client = chromadb.HttpClient(host='10.0.140.252', port=port_chroma_db)
openai_ef = embedding_functions.OpenAIEmbeddingFunction(
api_key=os.environ['OPENAI_API_KEY'],
model_name="text-embedding-ada-002"
)
references = None
if userPdf:
s3 = boto3.resource('s3')
s3_key = paperId + '.pdf'
doc_file_name = f"./log/{s3_key}"
s3.meta.client.download_file(s3_bucket, s3_key, doc_file_name)
else:
search = arxiv.Search(
id_list = [paperId],
max_results = 1,
sort_by = arxiv.SortCriterion.Relevance,
sort_order = arxiv.SortOrder.Descending
)
result = next(search.results())
prefix = "gs://arxiv-dataset/arxiv/arxiv/pdf"
if paperId == emb_paperId:
src_file_name = os.path.join(prefix,paperId.split('.')[0],result.entry_id.split("/")[-1]+".pdf")
doc_file_name = os.path.join("./log/",paperId+".pdf")
else:
src_file_name = os.path.join(prefix,paperId.split('/')[0],result.entry_id.split("/")[-1]+".pdf")
doc_file_name = os.path.join("./log/",emb_paperId+".pdf")
cmd="gsutil -m cp "+src_file_name+" "+doc_file_name
os.system(cmd)
if not os.path.exists(doc_file_name):
doc_file_name = result.download_pdf("./log/")
texts = read_pdf(doc_file_name)
references = extract_reference(texts, paperId)
try:
collection = client.get_collection(emb_paperId, embedding_function=openai_ef)
except:
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(texts, disallowed_special=())
chunks_100 = create_chunks(tokens, 100, tokenizer)
chunks_5k = create_exact_chunks_with_overlap(tokens, 5000, 500)
chunks_10k = create_exact_chunks_with_overlap(tokens, 10000, 500)
text_chunks_100 = [tokenizer.decode(chunk) for chunk in chunks_100]
text_chunks_5k = [tokenizer.decode(chunk) for chunk in chunks_5k]
text_chunks_10k = [tokenizer.decode(chunk) for chunk in chunks_10k]
collection = client.create_collection(name=emb_paperId,metadata = {"hnsw:space": "cosine"}, embedding_function=openai_ef)
collection.add(
ids = [str(i) for i in range(len(text_chunks_100))],
documents = text_chunks_100,
)
for chunk in text_chunks_5k:
context_5k = ContextCreate(text=chunk,paperId=f"{emb_paperId}_5k")
add_data(context_5k)
for chunk in text_chunks_10k:
context_10k = ContextCreate(text=chunk,paperId=f"{emb_paperId}_10k")
add_data(context_10k)
os.remove(doc_file_name)
return {
"references" : references
}
async def post_chat(data: Annotated[dict,{
"paperId" : str,
"question" : str,
"history" : list,
"extraPaperId" : str,
"underline" : str,
}]):
id_point = defaultdict(int)
opt = "10k"
if data["extraPaperId"] is not None:
opt = "5k"
paper_context = []
extra_context = []
pattern = r"/"
replacement = "."
data['paperId'] = re.sub(pattern, replacement, data['paperId'])
client = chromadb.HttpClient(host='10.0.140.252', port=8000)
openai_ef = embedding_functions.OpenAIEmbeddingFunction(
api_key=os.environ['OPENAI_API_KEY'],
model_name="text-embedding-ada-002"
)
try:
collection = client.get_collection(data['paperId'], embedding_function=openai_ef)
except:
raise HTTPException(status_code=400, detail="잘못된 요청: 임베딩 되지 않은 문서입니다.")
if data['extraPaperId'] is not None:
data["extraPaperId"] = re.sub(pattern, replacement, data["extraPaperId"])
extra_id_point = defaultdict(int)
try:
extra_collection = client.get_collection(data['extraPaperId'], embedding_function=openai_ef)
except:
await get_chat(data['extraPaperId'])
extra_collection = client.get_collection(data['extraPaperId'], embedding_function=openai_ef)
extra_query_results = extra_collection.query(
query_texts=data['question'],
n_results=10,
)
for result in extra_query_results['documents'][0]:
ctx = ContextCreate(text = result, paperId=f"{data['extraPaperId']}_{opt}")
search_results = search_data(ctx)
for search_result in search_results:
id_integer = int(search_result.id)
extra_id_point[id_integer] += 1
extra_max_value = max(extra_id_point.values()) # 최대값 찾기
extra_max_keys = [key for key, value in extra_id_point.items() if value == extra_max_value]
r = read_data(min(extra_max_keys), f"{data['extraPaperId']}_{opt}")
extra_context.append(r.text)
query_results = collection.query(
query_texts=data['question'],
n_results=10,
)
for result in query_results['documents'][0]:
ctx = ContextCreate(text = result, paperId=f"{data['paperId']}_{opt}")
search_results = search_data(ctx)
for search_result in search_results:
id_integer = int(search_result.id)
id_point[id_integer] += 1
if data['history'] is not None:
for history in data['history']:
prev_query_results = collection.query(
query_texts = history[0],
n_results=5,
)
for result in prev_query_results['documents'][0]:
ctx = ContextCreate(text = result, paperId=f"{data['paperId']}_{opt}")
search_results = search_data(ctx)
for search_result in search_results:
id_integer = int(search_result.id)
id_point[id_integer] += 1 * 0.5
if data["underline"] is not None:
ctx = ContextCreate(text = data["underline"], paperId=f"{data['paperId']}_{opt}")
search_results = search_data(ctx)
for search_result in search_results:
id_integer = int(search_result.id)
id_point[id_integer] += 10
max_value = max(id_point.values()) # 최대값 찾기
max_keys = [key for key, value in id_point.items() if value == max_value]
r = read_data(min(max_keys), f"{data['paperId']}_{opt}")
paper_context.append(r.text)
messages = [
{"role": "system", "content": MAIN_PROMPT}
]
if data['history'] is not None:
for history in data['history']:
messages.append({"role": "user", "content": history[0]})
messages.append({"role": "assistant", "content": history[1]})
if data['extraPaperId'] is not None:
if data["underline"] is not None:
context_prompt = EXTRA_CONTEXT_WITH_UNDERLINE_PROMPT + f"\n***contex(paperid={data['paperId']}) : {paper_context}***\n" + f"\n***extra_contex(paperid={data['extraPaperId']}) : {extra_context}***\n" +f"***underline : {data['underline']}***\n" +f"***user's question : {data['question']}***"
else:
context_prompt = EXTRA_CONTEXT_PROMPT + f"\n***contex(paperid={data['paperId']}) : {paper_context}***\n" + f"\n***extra_contex(paperid={data['extraPaperId']}) : {extra_context}***\n" + f"***user's question : {data['question']}***"
else:
if data["underline"] is not None:
context_prompt = CONTEXT_WITH_UNDERLINE_PROMPT + f"\n***contex(paperid={data['paperId']}) : {paper_context}***\n" +f"***underline : {data['underline']}***\n"+ f"***user's question : {data['question']}***"
else:
context_prompt = CONTEXT_PROMPT + f"\n***contex(paperid={data['paperId']}) : {paper_context}***\n" + f"***user's question : {data['question']}***"
messages.append({"role": "user","content": context_prompt})
response = openai.ChatCompletion.create(
model=MODEL,
messages=messages,
temperature=0,
max_tokens = 1000,
stream = True,
)
def generate_chunks():
for chunk in response:
try:
yield chunk["choices"][0]["delta"].content + "\n"
except:
yield "\n"
return StreamingResponse(
content=generate_chunks(),
media_type="text/plain"
)
async def post_coordinates(data: Annotated[dict,{
"key" : str,
"coordinates" : list,
}]):
# 대상 서버의 IP 주소와 포트 설정
target_host = "10.0.129.165"
target_port = 8080
# 대상 서버의 URL 생성
target_url = f"http://{target_host}:{target_port}/api/coordinates?key={data['key']}"
# httpx를 사용하여 POST 요청 보내기
async with httpx.AsyncClient() as client:
payload = {"coordinates": data['coordinates']} # 요청 데이터 준비
response = await client.post(target_url, json=payload)
# 응답 처리
status_code = response.status_code
response_data = response.json()
return {"status_code": status_code, "response_data": response_data}