-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
249 lines (210 loc) · 12.4 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from datasets import load_dataset
from torch.nn.utils.rnn import pad_sequence
from transformers import PreTrainedTokenizerBase
def _tensorize_batch(examples: List[Union[torch.Tensor, np.ndarray]],
padding_value, pad_to_multiple_of: Optional[int]) -> torch.Tensor:
examples = [torch.tensor(ex) if not isinstance(ex, torch.Tensor) else ex for ex in examples]
if pad_to_multiple_of is None:
return pad_sequence(examples, batch_first=True, padding_value=padding_value)
else:
max_sequence_length = max([ex.shape[0] for ex in examples])
padded_length = ((max_sequence_length + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
padded_examples = [torch.nn.functional.pad(ex, (0, padded_length - ex.size(0)), value=padding_value) for ex in
examples]
return torch.stack(padded_examples, dim=0)
@dataclass
class DataCollatorForTransliterationModeling:
tokenizer: PreTrainedTokenizerBase
max_seq_length: int
mlm_probability: float = 0.15
pad_to_multiple_of: Optional[int] = None
use_tlm: bool = False
reset_position_ids: bool = False
def __call__(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
input_ids_1 = [e['input_ids_1'] for e in examples]
attention_mask_1 = [e['attention_mask_1'] for e in examples]
special_tokens_mask_1 = [e['special_tokens_mask_1'] for e in examples]
token_type_ids_1 = [e['token_type_ids_1'] for e in examples]
input_ids_2 = [e['input_ids_2'] for e in examples]
attention_mask_2 = [e['attention_mask_2'] for e in examples]
special_tokens_mask_2 = [e['special_tokens_mask_2'] for e in examples]
token_type_ids_2 = [e['token_type_ids_2'] for e in examples]
input_ids_tlm, attention_mask_tlm, special_tokens_mask_tlm, token_type_ids_tlm = None, None, None, None
position_ids_tlm = None
seq_2_start = 0 if self.reset_position_ids else 1
if self.use_tlm:
orders = np.random.choice([0, 1], len(examples))
input_ids_tlm = [
(input_ids_1[i] + input_ids_2[i][seq_2_start:] if order else
input_ids_2[i] + input_ids_1[i][seq_2_start:])[:self.max_seq_length]
for i, order in enumerate(orders)
]
attention_mask_tlm = [
(attention_mask_1[i] + attention_mask_2[i][seq_2_start:] if order else
attention_mask_2[i] + attention_mask_1[i][seq_2_start:])[:self.max_seq_length]
for i, order in enumerate(orders)
]
special_tokens_mask_tlm = [
(special_tokens_mask_1[i] + special_tokens_mask_2[i][seq_2_start:] if order
else special_tokens_mask_2[i] + special_tokens_mask_1[i][seq_2_start:])[:self.max_seq_length]
for i, order in enumerate(orders)
]
token_type_ids_tlm = [
(token_type_ids_1[i] + token_type_ids_2[i][seq_2_start:] if order else
token_type_ids_2[i] + token_type_ids_1[i][seq_2_start:])[:self.max_seq_length]
for i, order in enumerate(orders)
]
if self.reset_position_ids:
start_position = self.tokenizer.pad_token_id + 1
position_ids_1 = [
[start_position + i for i in range(len(seq_1))] for seq_1 in input_ids_1
]
position_ids_2 = [
[start_position + i for i in range(len(seq_2))] for seq_2 in input_ids_2
]
position_ids_tlm = [
(position_ids_1[i] + position_ids_2[i] if order else
position_ids_2[i] + position_ids_1[i])[:self.max_seq_length]
for i, order in enumerate(orders)
]
input_ids_1 = _tensorize_batch(input_ids_1, padding_value=self.tokenizer.pad_token_id,
pad_to_multiple_of=self.pad_to_multiple_of)
attention_mask_1 = _tensorize_batch(attention_mask_1, padding_value=0,
pad_to_multiple_of=self.pad_to_multiple_of)
special_tokens_mask_1 = _tensorize_batch(special_tokens_mask_1, padding_value=1,
pad_to_multiple_of=self.pad_to_multiple_of)
token_type_ids_1 = _tensorize_batch(token_type_ids_1, padding_value=0,
pad_to_multiple_of=self.pad_to_multiple_of)
input_ids_2 = _tensorize_batch(input_ids_2, padding_value=self.tokenizer.pad_token_id,
pad_to_multiple_of=self.pad_to_multiple_of)
attention_mask_2 = _tensorize_batch(attention_mask_2, padding_value=0,
pad_to_multiple_of=self.pad_to_multiple_of)
special_tokens_mask_2 = _tensorize_batch(special_tokens_mask_2, padding_value=1,
pad_to_multiple_of=self.pad_to_multiple_of)
token_type_ids_2 = _tensorize_batch(token_type_ids_2, padding_value=0,
pad_to_multiple_of=self.pad_to_multiple_of)
if self.use_tlm:
input_ids_tlm = _tensorize_batch(input_ids_tlm, padding_value=self.tokenizer.pad_token_id,
pad_to_multiple_of=self.pad_to_multiple_of)
attention_mask_tlm = _tensorize_batch(attention_mask_tlm, padding_value=0,
pad_to_multiple_of=self.pad_to_multiple_of)
special_tokens_mask_tlm = _tensorize_batch(special_tokens_mask_tlm, padding_value=1,
pad_to_multiple_of=self.pad_to_multiple_of)
token_type_ids_tlm = _tensorize_batch(token_type_ids_tlm, padding_value=0,
pad_to_multiple_of=self.pad_to_multiple_of)
if self.reset_position_ids:
position_ids_tlm = _tensorize_batch(position_ids_tlm, padding_value=self.tokenizer.pad_token_id,
pad_to_multiple_of=self.pad_to_multiple_of)
batch = dict()
batch["input_ids_1"], batch["labels_1"] = self.torch_mask_tokens(
input_ids_1, special_tokens_mask=special_tokens_mask_1
)
batch["input_ids_2"], batch["labels_2"] = self.torch_mask_tokens(
input_ids_2, special_tokens_mask=special_tokens_mask_2
)
batch['attention_mask_1'] = attention_mask_1
batch['special_tokens_mask_1'] = special_tokens_mask_1
batch['token_type_ids_1'] = token_type_ids_1
batch['attention_mask_2'] = attention_mask_2
batch['special_tokens_mask_2'] = special_tokens_mask_2
batch['token_type_ids_2'] = token_type_ids_2
if self.use_tlm:
batch['input_ids_tlm'], batch['labels_tlm'] = self.torch_mask_tokens(
input_ids_tlm, special_tokens_mask=special_tokens_mask_tlm
)
batch['attention_mask_tlm'] = attention_mask_tlm
batch['token_type_ids_tlm'] = token_type_ids_tlm
if self.reset_position_ids:
batch['position_ids_tlm'] = position_ids_tlm
return batch
def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def load_transliteration_dataset_new(transliteration_train_file, tokenizer, max_seq_length,
pad_to_multiple_of_8, model_args, data_args):
transliteration_data_files = dict()
transliteration_data_files["train"] = transliteration_train_file
extension = transliteration_train_file.split(".")[-1]
if extension == "txt":
extension = "text"
transliteration_datasets = load_dataset(
extension,
cache_dir=model_args.cache_dir,
data_files=transliteration_data_files,
use_auth_token=True if model_args.use_auth_token else None
)
text_column_name = "text"
transliteration_column_name = "transliteration"
def preprocess_function_tcm(examples):
new_examples = {'text': [], 'transliteration': []}
for i in range(len(examples['text'])):
if (
examples["text"][i] is None or len(examples["text"][i]) == 0
or examples["transliteration"][i] is None
or len(examples["transliteration"][i]) == 0
):
continue
else:
new_examples['text'].append(examples["text"][i])
new_examples['transliteration'].append(examples["transliteration"][i])
examples = new_examples
tokenized_text = tokenizer(examples["text"], max_length=max_seq_length, padding=False,
truncation=True, return_special_tokens_mask=True)
tokenized_transliteration = tokenizer(examples["transliteration"], max_length=max_seq_length,
padding=False,
truncation=True, return_special_tokens_mask=True)
# concatenate
model_inputs = dict()
model_inputs['input_ids_1'] = tokenized_text['input_ids']
model_inputs['attention_mask_1'] = tokenized_text['attention_mask']
model_inputs['special_tokens_mask_1'] = tokenized_text['special_tokens_mask']
model_inputs['token_type_ids_1'] = [[0 for _ in x] for x in tokenized_text['input_ids']]
model_inputs['input_ids_2'] = tokenized_transliteration['input_ids']
model_inputs['attention_mask_2'] = tokenized_transliteration['attention_mask']
model_inputs['special_tokens_mask_2'] = tokenized_transliteration['special_tokens_mask']
model_inputs['token_type_ids_2'] = [[0 for _ in x] for x in tokenized_transliteration['input_ids']]
return model_inputs
tokenized_transliteration_datasets = transliteration_datasets.map(
preprocess_function_tcm,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=[text_column_name, transliteration_column_name],
desc="Running tokenizer on paired transliteration dataset line_by_line"
)
transliteration_data_collator = DataCollatorForTransliterationModeling(
tokenizer=tokenizer,
max_seq_length=max_seq_length,
mlm_probability=data_args.mlm_probability,
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
use_tlm=data_args.use_tlm,
reset_position_ids=data_args.reset_position_ids
)
return tokenized_transliteration_datasets, transliteration_data_collator