forked from callee2006/HGUNeuralNetworks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
154 lines (115 loc) · 3.49 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/***
Copyright 2012 Injung Kim
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
***/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "HGULayer.h"
#include "HGUNeuralNetwork.h"
#include "HGUAutoEncoder.h"
int TestMLP();
int TestAutoEncoder();
int main(int argc, char *argv[])
{
TestMLP();
TestAutoEncoder();
return TRUE;
}
int TestMLP()
{
int aNetStruct[] = { 2, 4, 1 };
const int noSample = 4;
float aSample[4][2] = {
{ 0.F, 0.F },
{ 0.F, 1.F },
{ 1.F, 0.F },
{ 1.F, 1.F }
};
float aDesiredOutput[] = { 0, 1, 1, 0 };
srand((unsigned int)time(NULL));
HGUNeuralNetwork nn;
nn.Alloc(2, aNetStruct);
printf("=== Training MLP...\n");
const int maxEpoch = 1000000;
for(int epoch = 0; epoch < maxEpoch; epoch++){
float error = 0.F;
for(int i = 0; i < noSample; i++){
nn.ComputeGradient(aSample[i], &aDesiredOutput[i]);
error += nn.GetError(&aDesiredOutput[i]);
}
error /= noSample;
nn.UpdateWeight(0.3F);
if((epoch + 1) % 100 == 0)
printf("epoch = %d, error = %f\n", epoch + 1, error);
// if((epoch + 1) % 1000 == 0)
// getchar();
if(error < 0.0001F)
break;
}
printf("=== Training MLP... Done.\n");
system("PAUSE");
printf("=== Testing MLP...\n");
for(int j = 0; j < noSample; j++){
nn.Propagate(aSample[j]);
float *output = nn.GetOutput();
float *hidden = nn[0].GetOutput();
printf("sample %d: (%f %f) --> (%f %f %f %f) --> %f\n", j, aSample[j][0], aSample[j][1], hidden[0], hidden[1], hidden[2], hidden[3], output[0]);
}
system("PAUSE");
return TRUE;
}
int TestAutoEncoder()
{
const int noHidden = 5;
const int noSample = 4;
float aSample[4][2] = {
{ 0.F, 0.F },
{ 0.F, 1.F },
{ 1.F, 0.F },
{ 1.F, 1.F }
};
srand((unsigned int)time(NULL));
HGUAutoEncoder ae(2, noHidden);
const int maxEpoch = 1000000;
printf("=== Training AutoEncoder...\n");
for(int epoch = 0; epoch < maxEpoch; epoch++){
float error = 0.F;
for(int i = 0; i < noSample; i++){
ae.ComputeGradient(aSample[i]);
error += ae.GetReproductionError();
}
error /= noSample;
ae.UpdateWeight(0.3F);
if((epoch + 1) % 100 == 0){
printf("epoch = %d, error = %f\n", epoch + 1, error);
for(int j = 0; j < noSample; j++){
ae.Reproduce(aSample[j]);
float *reprod = ae.GetReproduction();
printf("sample %d: (%f %f) --> (%f %f)\n", j, aSample[j][0], aSample[j][1], reprod[0], reprod[1]);
}
}
if(error < 0.0001F)
break;
}
printf("=== Training AutoEncoder... Done.\n");
system("PAUSE");
printf("=== Testing AutoEncoder...\n");
for(int j = 0; j < noSample; j++){
ae.Reproduce(aSample[j]);
float *encoded = ae.GetOutput();
float *reprod = ae.GetReproduction();
printf("sample %d: (%f %f) --> (%f %f %f %f %f --> (%f %f)\n", j, aSample[j][0], aSample[j][1], encoded[0], encoded[1], encoded[2], encoded[3], encoded[4], reprod[0], reprod[1]);
}
system("PAUSE");
return TRUE;
}