# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. library(mxnet) get_symbol <- function(num_classes = 1000) { ## define alexnet data = mx.symbol.Variable(name = "data") # group 1 conv1_1 = mx.symbol.Convolution(data = data, kernel = c(3, 3), pad = c(1, 1), num_filter = 64, name = "conv1_1") relu1_1 = mx.symbol.Activation(data = conv1_1, act_type = "relu", name = "relu1_1") pool1 = mx.symbol.Pooling(data = relu1_1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = "pool1") # group 2 conv2_1 = mx.symbol.Convolution(data = pool1, kernel = c(3, 3), pad = c(1, 1), num_filter = 128, name = "conv2_1") relu2_1 = mx.symbol.Activation(data = conv2_1, act_type = "relu", name = "relu2_1") pool2 = mx.symbol.Pooling(data = relu2_1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = "pool2") # group 3 conv3_1 = mx.symbol.Convolution(data = pool2, kernel = c(3, 3), pad = c(1, 1), num_filter = 256, name = "conv3_1") relu3_1 = mx.symbol.Activation(data = conv3_1, act_type = "relu", name = "relu3_1") conv3_2 = mx.symbol.Convolution(data = relu3_1, kernel = c(3, 3), pad = c(1, 1), num_filter = 256, name = "conv3_2") relu3_2 = mx.symbol.Activation(data = conv3_2, act_type = "relu", name = "relu3_2") pool3 = mx.symbol.Pooling(data = relu3_2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = "pool3") # group 4 conv4_1 = mx.symbol.Convolution(data = pool3, kernel = c(3, 3), pad = c(1, 1), num_filter = 512, name = "conv4_1") relu4_1 = mx.symbol.Activation(data = conv4_1, act_type = "relu", name = "relu4_1") conv4_2 = mx.symbol.Convolution(data = relu4_1, kernel = c(3, 3), pad = c(1, 1), num_filter = 512, name = "conv4_2") relu4_2 = mx.symbol.Activation(data = conv4_2, act_type = "relu", name = "relu4_2") pool4 = mx.symbol.Pooling(data = relu4_2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = "pool4") # group 5 conv5_1 = mx.symbol.Convolution(data = pool4, kernel = c(3, 3), pad = c(1, 1), num_filter = 512, name = "conv5_1") relu5_1 = mx.symbol.Activation(data = conv5_1, act_type = "relu", name = "relu5_1") conv5_2 = mx.symbol.Convolution(data = relu5_1, kernel = c(3, 3), pad = c(1, 1), num_filter = 512, name = "conv5_2") relu5_2 = mx.symbol.Activation(data = conv5_2, act_type = "relu", name = "relu5_2") pool5 = mx.symbol.Pooling(data = relu5_2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = "pool5") # group 6 flatten = mx.symbol.Flatten(data = pool5, name = "flatten") fc6 = mx.symbol.FullyConnected(data = flatten, num_hidden = 4096, name = "fc6") relu6 = mx.symbol.Activation(data = fc6, act_type = "relu", name = "relu6") drop6 = mx.symbol.Dropout(data = relu6, p = 0.5, name = "drop6") # group 7 fc7 = mx.symbol.FullyConnected(data = drop6, num_hidden = 4096, name = "fc7") relu7 = mx.symbol.Activation(data = fc7, act_type = "relu", name = "relu7") drop7 = mx.symbol.Dropout(data = relu7, p = 0.5, name = "drop7") # output fc8 = mx.symbol.FullyConnected(data = drop7, num_hidden = num_classes, name = "fc8") softmax = mx.symbol.SoftmaxOutput(data = fc8, name = 'softmax') return(softmax) }