-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcountavx512_amd64.s
511 lines (446 loc) · 13.5 KB
/
countavx512_amd64.s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#include "textflag.h"
// An AVX512 based kernel first doing a 15-fold CSA reduction
// and then a 16-fold CSA reduction, carrying over place-value
// vectors between iterations.
// Required CPU extensions: BMI2, AVX-512 -F, -BW.
// magic constants
DATA magic<>+ 0(SB)/4, $0x55555555
DATA magic<>+ 4(SB)/4, $0x33333333
DATA magic<>+ 8(SB)/4, $0x0f0f0f0f
DATA magic<>+12(SB)/4, $0x00ff00ff
// permutation vectors for the last permutation step of the vec loop
// permutes words
// A = 0000 1111 2222 3333 4444 5555 6666 7777
// B = 8888 9999 AAAA BBBB CCCC DDDD EEEE FFFF
// into the order used by the counters:
// Q1 = 0123 4567 0123 4567 0123 4567 0123 4567
// Q2 = 89AB CDEF 89AB CDEF 89AB CDEF 89AB CDEF
DATA magic<>+16(SB)/8, $0x1c1814100c080400
DATA magic<>+24(SB)/8, $0x1d1915110d090501
DATA magic<>+32(SB)/8, $0x1e1a16120e0a0602
DATA magic<>+40(SB)/8, $0x1f1b17130f0b0703
GLOBL magic<>(SB), RODATA|NOPTR, $48
// B:A = A+B+C, D used as scratch space
#define CSA(A, B, C, D) \
VMOVDQA64 A, D \
VPTERNLOGD $0x96, C, B, A \
VPTERNLOGD $0xe8, C, D, B
// Generic kernel. This function expects a pointer to a width-specific
// accumulation function in BX, a possibly unaligned input buffer in SI,
// counters in DI and an array length in CX.
TEXT countavx512<>(SB), NOSPLIT, $0-0
// head and tail constants, counter registers
VPTERNLOGD $0xff, Z30, Z30, Z30 // ffffffff
VPXORD Y25, Y25, Y25 // zero register
CMPQ CX, $15*64 // is the CSA kernel worth using?
JLT runt
// compute misalignment mask
MOVQ $-1, AX
SHLXQ SI, AX, AX // mask out the head of the load
KMOVQ AX, K1 // prepare mask register
ADDQ SI, CX
ANDQ $~63, SI // align source to 64 byte
SUBQ SI, CX // account for head length in CX
VMOVDQU8.Z 0*64(SI), K1, Z0 // load 960 bytes from buf
VMOVDQA64 1*64(SI), Z1 // and sum them into Z3:Z2:Z1:Z0
VMOVDQA64 2*64(SI), Z4
VPXOR Y8, Y8, Y8 // initialise counters
VPXOR Y9, Y9, Y9
VMOVDQA64 3*64(SI), Z2
VMOVDQA64 4*64(SI), Z3
VMOVDQA64 5*64(SI), Z5
CSA(Z0, Z1, Z4, Z22)
VMOVDQA64 6*64(SI), Z6
VMOVDQA64 7*64(SI), Z7
VMOVDQA64 8*64(SI), Z10
CSA(Z2, Z3, Z5, Z22)
VMOVDQA64 9*64(SI), Z11
VMOVDQA64 10*64(SI), Z12
VMOVDQA64 11*64(SI), Z13
CSA(Z6, Z7, Z10, Z22)
VMOVDQA64 12*64(SI), Z4
VMOVDQA64 13*64(SI), Z5
VMOVDQA64 14*64(SI), Z10
CSA(Z11, Z12, Z13, Z22)
VPBROADCASTD magic<>+0(SB), Z28 // 0x55555555 for transposition
VPBROADCASTD magic<>+4(SB), Z27 // 0x33333333 for transposition
VPBROADCASTD magic<>+8(SB), Z26 // 0x0f0f0f0f for transposition
CSA(Z4, Z5, Z10, Z22)
CSA(Z0, Z2, Z6, Z22)
CSA(Z1, Z3, Z7, Z22)
CSA(Z0, Z11, Z4, Z22)
CSA(Z2, Z12, Z5, Z22)
CSA(Z1, Z2, Z11, Z22)
CSA(Z2, Z3, Z12, Z22)
ADDQ $15*64, SI
SUBQ $(15+16)*64, CX // enough data left to process?
JLT post
VPBROADCASTD magic<>+12(SB), Z24 // 0x00ff00ff
VPMOVZXBW magic<>+16(SB), Z23 // transposition vector
MOVL $65535, AX // space left til overflow could occur in Z8, Z9
// load 1024 bytes from buf, add them to Z0..Z3 into Z0..Z4
vec: VMOVDQA64 0*64(SI), Z4
VMOVDQA64 1*64(SI), Z5
VMOVDQA64 2*64(SI), Z6
VMOVDQA64 3*64(SI), Z7
VMOVDQA64 4*64(SI), Z10
CSA(Z0, Z4, Z5, Z22)
VMOVDQA64 5*64(SI), Z5
VMOVDQA64 6*64(SI), Z11
VMOVDQA64 7*64(SI), Z12
CSA(Z6, Z7, Z10, Z22)
VMOVDQA64 8*64(SI), Z10
VMOVDQA64 9*64(SI), Z13
VMOVDQA64 10*64(SI), Z14
CSA(Z5, Z11, Z12, Z22)
VMOVDQA64 11*64(SI), Z12
VMOVDQA64 12*64(SI), Z15
VMOVDQA64 13*64(SI), Z16
CSA(Z10, Z13, Z14, Z22)
VMOVDQA64 14*64(SI), Z14
VMOVDQA64 15*64(SI), Z17
CSA(Z12, Z15, Z16, Z22)
ADDQ $16*64, SI
PREFETCHT0 (SI)
CSA(Z0, Z5, Z6, Z22)
PREFETCHT0 64(SI)
CSA(Z1, Z4, Z7, Z22)
CSA(Z10, Z12, Z14, Z22)
CSA(Z11, Z13, Z15, Z22)
CSA(Z0, Z10, Z17, Z22)
CSA(Z1, Z5, Z11, Z22)
CSA(Z2, Z4, Z13, Z22)
CSA(Z1, Z10, Z12, Z22)
CSA(Z2, Z5, Z10, Z22)
CSA(Z3, Z4, Z5, Z22)
// now Z0..Z4 hold counters; preserve Z0..Z3 for next round and
// add Z4 to counters.
// split into even/odd and reduce into crumbs
VPANDD Z4, Z28, Z5 // Z5 = bits 02468ace x32
VPANDND Z4, Z28, Z6 // Z6 = bits 13579bdf x32
VPSRLD $1, Z6, Z6
VSHUFI64X2 $0x44, Z6, Z5, Z10
VSHUFI64X2 $0xee, Z6, Z5, Z11
VPADDD Z10, Z11, Z4 // Z4 = 02468ace x16 ... 13579bdf x16
// split again and reduce into nibbles
VPANDD Z4, Z27, Z5 // Z5 = 048c x16 ... 159d x16
VPANDND Z4, Z27, Z6 // Z6 = 26ae x16 ... 37bf x16
VPSRLD $2, Z6, Z6
VSHUFI64X2 $0x88, Z6, Z5, Z10
VSHUFI64X2 $0xdd, Z6, Z5, Z11
VPADDD Z10, Z11, Z4 // Z4 = 048c x8 159d x8 26ae x8 37bf x8
// split again and reduce into bytes (shifted left by 4)
VPANDD Z4, Z26, Z5 // Z5 = 08 x8 19 x8 2a x8 3b x8
VPANDND Z4, Z26, Z6 // Z6 = 4c x8 5d x8 6e x8 7f x8
VPSLLD $4, Z5, Z5
VPERMQ $0xd8, Z5, Z5 // Z5 = 08x4 19x4 08x4 19x4 2ax4 3bx4 2ax4 3bx4
VPERMQ $0xd8, Z6, Z6 // Z6 = 4cx4 5dx4 4cx4 5dx4 6ex4 7fx4 6ex4 7fx4
VSHUFI64X2 $0x88, Z6, Z5, Z10
VSHUFI64X2 $0xdd, Z6, Z5, Z11
VPADDD Z10, Z11, Z4 // Z4 = 08x4 19x4 2ax4 3bx4 4cx4 5dx4 6ex4 7fx4
// split again into 16 bit counters
VPSRLW $8, Z4, Z6 // Z6 = 8888 9999 aaaa bbbb cccc dddd eeee ffff
VPANDD Z4, Z24, Z5 // Z5 = 0000 1111 2222 3333 4444 5555 6666 7777
// accumulate in permuted order
VPADDW Z5, Z8, Z8
VPADDW Z6, Z9, Z9
SUBL $16*8, AX // account for possible overflow
CMPL AX, $(15+15)*8 // enough space left in the counters?
JGE have_space
// fix permutation and flush into counters
VPERMW Z8, Z23, Z8 // Z5 = 0123 4567 0123 4567 0123 4567 0123 4567
VPERMW Z9, Z23, Z9 // Z6 = 89ab cdef 89ab cdef 89ab cdef 89ab cdef
CALL *BX // call accumulation function
VPXOR Y8, Y8, Y8 // clear accumulators for next round
VPXOR Y9, Y9, Y9
MOVL $65535, AX // space left til overflow could occur
have_space:
SUBQ $16*64, CX // account for bytes consumed
JGE vec
// fix permutation for final step
VPERMW Z8, Z23, Z8 // Z5 = 0123 4567 0123 4567 0123 4567 0123 4567
VPERMW Z9, Z23, Z9 // Z6 = 89ab cdef 89ab cdef 89ab cdef 89ab cdef
// sum up Z0..Z3 into the counter registers
post: VPSRLD $1, Z0, Z4 // group nibbles in Z0--Z3 into Z4--Z7
VPADDD Z1, Z1, Z5
VPSRLD $1, Z2, Z6
VPADDD Z3, Z3, Z7
VPTERNLOGD $0xe4, Z28, Z5, Z0 // Z0 = eca86420 (low crumbs)
VPTERNLOGD $0xd8, Z28, Z4, Z1 // Z1 = fdb97531 (high crumbs)
VPTERNLOGD $0xe4, Z28, Z7, Z2 // Z2 = eca86420 (low crumbs)
VPTERNLOGD $0xd8, Z28, Z6, Z3 // Z3 = fdb97531 (high crumbs)
VPSRLD $2, Z0, Z4
VPSRLD $2, Z1, Z6
VPSLLD $2, Z2, Z5
VPSLLD $2, Z3, Z7
VPTERNLOGD $0xd8, Z27, Z4, Z2 // Z2 = ea63
VPTERNLOGD $0xd8, Z27, Z6, Z3 // Z3 = fb73
VPTERNLOGD $0xe4, Z27, Z5, Z0 // Z0 = c840
VPTERNLOGD $0xe4, Z27, Z7, Z1 // Z1 = d951
// pre-shuffle nibbles (within 128 bit lanes)!
VPUNPCKLBW Z3, Z2, Z6 // Z6 = fbea7362 (3:2:1:0)
VPUNPCKHBW Z3, Z2, Z3 // Z3 = fbea7362 (7:6:5:4)
VPUNPCKLBW Z1, Z0, Z5 // Z5 = d9c85140 (3:2:1:0)
VPUNPCKHBW Z1, Z0, Z2 // Z2 = d9c85140 (7:6:5:4)
VPUNPCKLWD Z6, Z5, Z4 // Z4 = fbead9c873625140 (1:0)
VPUNPCKHWD Z6, Z5, Z5 // Z5 = fbead9c873625140 (3:2)
VPUNPCKLWD Z3, Z2, Z6 // Z6 = fbead9c873625140 (5:4)
VPUNPCKHWD Z3, Z2, Z7 // Z7 = fbead9c873625140 (7:6)
// pull out high and low nibbles
VPANDD Z26, Z4, Z0
VPSRLD $4, Z4, Z4
VPANDD Z26, Z4, Z4
VPANDD Z26, Z5, Z1
VPSRLD $4, Z5, Z5
VPANDD Z26, Z5, Z5
VPANDD Z26, Z6, Z2
VPSRLD $4, Z6, Z6
VPANDD Z26, Z6, Z6
VPANDD Z26, Z7, Z3
VPSRLD $4, Z7, Z7
VPANDD Z26, Z7, Z7
// reduce once
VPADDB Z2, Z0, Z0 // Z0 = ba983210 (1:0)
VPADDB Z3, Z1, Z1 // Z1 = ba983210 (3:2)
VPADDB Z6, Z4, Z2 // Z2 = fedc7654 (1:0)
VPADDB Z7, Z5, Z3 // Z3 = fedc7654 (3:2)
// shuffle again to form ordered groups of 16 counters in each lane
VPUNPCKLDQ Z2, Z0, Z4 // Z4 = fedcba9876543210 (0)
VPUNPCKHDQ Z2, Z0, Z5 // Z5 = fedcba9876543210 (1)
VPUNPCKLDQ Z3, Z1, Z6 // Z6 = fedcba9876543210 (2)
VPUNPCKHDQ Z3, Z1, Z7 // Z7 = fedcba9876543210 (3)
// reduce lanes once (4x1 lane -> 2x2 lanes)
VSHUFI64X2 $0x44, Z5, Z4, Z0 // Z0 = fedcba9876543210 (1:1:0:0)
VSHUFI64X2 $0xee, Z5, Z4, Z1 // Z1 = fedcba9876543210 (1:1:0:0)
VSHUFI64X2 $0x44, Z7, Z6, Z2 // Z2 = fedcba9876543210 (3:3:2:2)
VSHUFI64X2 $0xee, Z7, Z6, Z3 // Z2 = fedcba9876543210 (3:3:2:2)
VPADDB Z1, Z0, Z0
VPADDB Z3, Z2, Z2
// reduce lanes again (2x2 lanes -> 1x4 lane)
VSHUFI64X2 $0x88, Z2, Z0, Z1 // Z1 = fedcba9876543210 (3:2:1:0)
VSHUFI64X2 $0xdd, Z2, Z0, Z0 // Z0 = fedcba9876543210 (3:2:1:0)
VPADDB Z1, Z0, Z0
// Zero extend and add to Z8, Z9
VPUNPCKLBW Z25, Z0, Z1 // Z1 = 76543210 (3:2:1:0)
VPUNPCKHBW Z25, Z0, Z2 // Z2 = fedcba98 (3:2:1:0)
VPADDW Z1, Z8, Z8
VPADDW Z2, Z9, Z9
endvec: VPXOR Y0, Y0, Y0 // counter register
// process tail, 8 bytes at a time
CMPL CX, $-16*64 // no bytes left to process?
JE end
SUBL $8-16*64, CX // 8 bytes left to process?
JLE tail1
tail8: KMOVQ (SI), K1
ADDQ $8, SI
VPSUBB Z30, Z0, K1, Z0
SUBL $8, CX
JGT tail8
// process remaining 1--8 bytes
tail1: MOVL $8*8(CX*8), CX
BZHIQ CX, (SI), AX // load tail into AX (will never fault)
KMOVQ AX, K1
VPSUBB Z30, Z0, K1, Z0
// add tail to counters
VPUNPCKLBW Z25, Z0, Z1
VPUNPCKHBW Z25, Z0, Z2
VPADDW Z1, Z8, Z8
VPADDW Z2, Z9, Z9
// and perform a final accumulation
end: CALL *BX
VZEROUPPER
RET
// special processing for when the data is less than
// one iteration of the kernel
runt: VPXOR Y0, Y0, Y0 // counter register
SUBL $8, CX // 8 bytes left to process?
JLE runtrunt // input of 0--8 bytes?
runt8: KMOVQ (SI), K1
ADDQ $8, SI
VPSUBB Z30, Z0, K1, Z0
SUBQ $8, CX
JGT runt8
// process last 1--7 bytes
// as SI has no particular alignment, we cannot savely overread
// instead overlap previous chunk and shift out junk
MOVL $(CX*8), DX
NEGL DX // number of bits to be masked out
SHRXQ DX, (SI)(CX*1), AX
KMOVQ AX, K1
VPSUBB Z30, Z0, K1, Z0
// populate counters and accumulate
VPUNPCKLBW Z25, Z0, Z8
VPUNPCKHBW Z25, Z0, Z9
CALL *BX
VZEROUPPER
RET
// process runt of 0--8 bytes
runtrunt:
ADDL $8, CX
XORL AX, AX
BTSL CX, AX // 1 << CX
DECL AX // mask of CX ones
KMOVD AX, K1
VMOVDQU8.Z (SI), K1, X4 // just the runt bytes
VMOVQ X4, AX
KMOVQ AX, K1
VPSUBB Z30, Z0, K1, Z0
// populate counters and accumulate
VPUNPCKLBW Z25, Z0, Z8
VPUNPCKHBW Z25, Z0, Z9
CALL *BX
VZEROUPPER
RET
TEXT accum8<>(SB), NOSPLIT, $0-0
// unpack and zero-extend
VPMOVZXWQ X8, Z10
VEXTRACTI128 $1, Y8, X11
VPMOVZXWQ X11, Z11
VEXTRACTI64X2 $2, Z8, X12
VPMOVZXWQ X12, Z12
VEXTRACTI64X2 $3, Z8, X13
VPMOVZXWQ X13, Z13
VPMOVZXWQ X9, Z14
VEXTRACTI128 $1, Y9, X15
VPMOVZXWQ X15, Z15
VEXTRACTI64X2 $2, Z9, X16
VPMOVZXWQ X16, Z16
VEXTRACTI64X2 $3, Z9, X17
VPMOVZXWQ X17, Z17
// fold over thrice
VPADDQ Z12, Z10, Z10
VPADDQ Z13, Z11, Z11
VPADDQ Z16, Z14, Z14
VPADDQ Z17, Z15, Z15
VPADDQ Z11, Z10, Z10
VPADDQ Z15, Z14, Z14
VPADDQ Z14, Z10, Z10
// add to counters
VPADDQ 0*64(DI), Z10, Z10
VMOVDQU64 Z10, 0*64(DI)
RET
TEXT accum16<>(SB), NOSPLIT, $0-0
// unpack and zero-extend
VPMOVZXWQ X8, Z10
VEXTRACTI128 $1, Y8, X11
VPMOVZXWQ X11, Z11
VEXTRACTI64X2 $2, Z8, X12
VPMOVZXWQ X12, Z12
VEXTRACTI64X2 $3, Z8, X13
VPMOVZXWQ X13, Z13
VPMOVZXWQ X9, Z14
VEXTRACTI128 $1, Y9, X15
VPMOVZXWQ X15, Z15
VEXTRACTI64X2 $2, Z9, X16
VPMOVZXWQ X16, Z16
VEXTRACTI64X2 $3, Z9, X17
VPMOVZXWQ X17, Z17
// fold over twice
VPADDQ Z12, Z10, Z10
VPADDQ Z13, Z11, Z11
VPADDQ Z16, Z14, Z14
VPADDQ Z17, Z15, Z15
VPADDQ Z11, Z10, Z10
VPADDQ Z15, Z14, Z14
// add to counters
VPADDQ 0*64(DI), Z10, Z10
VPADDQ 1*64(DI), Z14, Z14
VMOVDQU64 Z10, 0*64(DI)
VMOVDQU64 Z14, 1*64(DI)
RET
TEXT accum32<>(SB), NOSPLIT, $0-0
// fold high half over low half and reduce
VEXTRACTI64X2 $2, Z8, X12
VEXTRACTI64X2 $2, Z9, X13
VPMOVZXWQ X8, Z10
VPMOVZXWQ X9, Z11
VPMOVZXWQ X12, Z12
VPMOVZXWQ X13, Z13
VPADDQ Z12, Z10, Z10
VPADDQ Z13, Z11, Z11
VPADDQ 0*64(DI), Z10, Z10
VPADDQ 1*64(DI), Z11, Z11
VMOVDQU64 Z10, 0*64(DI)
VMOVDQU64 Z11, 1*64(DI)
VEXTRACTI128 $1, Y8, X10
VEXTRACTI128 $1, Y9, X11
VEXTRACTI64X2 $3, Z8, X12
VEXTRACTI64X2 $3, Z9, X13
VPMOVZXWQ X10, Z10
VPMOVZXWQ X11, Z11
VPMOVZXWQ X12, Z12
VPMOVZXWQ X13, Z13
VPADDQ Z12, Z10, Z10
VPADDQ Z13, Z11, Z11
VPADDQ 2*64(DI), Z10, Z10
VPADDQ 3*64(DI), Z11, Z11
VMOVDQU64 Z10, 2*64(DI)
VMOVDQU64 Z11, 3*64(DI)
RET
TEXT accum64<>(SB), NOSPLIT, $0-0
VPMOVZXWQ X8, Z13
VPMOVZXWQ X9, Z14
VPADDQ 0*64(DI), Z13, Z13
VPADDQ 1*64(DI), Z14, Z14
VMOVDQU64 Z13, 0*64(DI)
VMOVDQU64 Z14, 1*64(DI)
VEXTRACTI128 $1, Y8, X13
VEXTRACTI128 $1, Y9, X14
VPMOVZXWQ X13, Z13
VPMOVZXWQ X14, Z14
VPADDQ 2*64(DI), Z13, Z13
VPADDQ 3*64(DI), Z14, Z14
VMOVDQU64 Z13, 2*64(DI)
VMOVDQU64 Z14, 3*64(DI)
VEXTRACTI64X2 $2, Z8, X13
VEXTRACTI64X2 $2, Z9, X14
VPMOVZXWQ X13, Z13
VPMOVZXWQ X14, Z14
VPADDQ 4*64(DI), Z13, Z13
VPADDQ 5*64(DI), Z14, Z14
VMOVDQU64 Z13, 4*64(DI)
VMOVDQU64 Z14, 5*64(DI)
VEXTRACTI64X2 $3, Z8, X13
VEXTRACTI64X2 $3, Z9, X14
VPMOVZXWQ X13, Z13
VPMOVZXWQ X14, Z14
VPADDQ 6*64(DI), Z13, Z13
VPADDQ 7*64(DI), Z14, Z14
VMOVDQU64 Z13, 6*64(DI)
VMOVDQU64 Z14, 7*64(DI)
RET
// func count8avx512(counts *[8]int, buf []uint8)
TEXT ·count8avx512(SB), 0, $0-32
MOVQ counts+0(FP), DI
MOVQ buf_base+8(FP), SI
MOVQ buf_len+16(FP), CX
MOVQ $accum8<>(SB), BX
CALL countavx512<>(SB)
RET
// func count16avx512(counts *[16]int, buf []uint16)
TEXT ·count16avx512(SB), 0, $0-32
MOVQ counts+0(FP), DI
MOVQ buf_base+8(FP), SI
MOVQ buf_len+16(FP), CX
MOVQ $accum16<>(SB), BX
SHLQ $1, CX
CALL countavx512<>(SB)
RET
// func count32avx512(counts *[32]int, buf []uint32)
TEXT ·count32avx512(SB), 0, $0-32
MOVQ counts+0(FP), DI
MOVQ buf_base+8(FP), SI
MOVQ buf_len+16(FP), CX
MOVQ $accum32<>(SB), BX
SHLQ $2, CX
CALL countavx512<>(SB)
RET
// func count64avx512(counts *[64]int, buf []uint64)
TEXT ·count64avx512(SB), 0, $0-32
MOVQ counts+0(FP), DI
MOVQ buf_base+8(FP), SI
MOVQ buf_len+16(FP), CX
MOVQ $accum64<>(SB), BX
SHLQ $3, CX
CALL countavx512<>(SB)
RET