-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_chase.py
89 lines (64 loc) · 3.16 KB
/
train_chase.py
1
import osimport numpy as npimport cv2from sklearn.model_selection import train_test_splitfrom keras.callbacks import TensorBoard, ModelCheckpointfrom util import *np.random.seed(42)import scipy.misc as mcdata_location = ''training_images_loc = data_location + 'Chase/train/image/'training_label_loc = data_location + 'Chase/train/label/'train_files = os.listdir(training_images_loc)train_data = []train_label = []validate_data = []validate_label = []desired_size=1008for i in train_files: im = mc.imread(training_images_loc + i) label = mc.imread(training_label_loc + "Image_" +i.split('_')[1].split(".")[0] +"_1stHO.png" ) old_size = im.shape[:2] # old_size is in (height, width) format delta_w = desired_size - old_size[1] delta_h = desired_size - old_size[0] top, bottom = delta_h // 2, delta_h - (delta_h // 2) left, right = delta_w // 2, delta_w - (delta_w // 2) color = [0, 0, 0] color2 = [0] new_im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) new_label = cv2.copyMakeBorder(label, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color2) train_data.append(cv2.resize(new_im, (desired_size, desired_size))) temp = cv2.resize(new_label, (desired_size, desired_size)) _, temp = cv2.threshold(temp, 127, 255, cv2.THRESH_BINARY) train_label.append(temp)train_data = np.array(train_data)train_label = np.array(train_label)x_train = train_data.astype('float32') / 255.y_train = train_label.astype('float32') / 255.x_rotated, y_rotated, x_flipped, y_flipped = img_augmentation(x_train, y_train)x_train= np.concatenate([x_train, x_rotated,x_flipped])y_train = np.concatenate([y_train, y_rotated,y_flipped])x_train, x_validate, y_train, y_validate = train_test_split(x_train, y_train, test_size = 0.10, random_state = 101)x_train = np.reshape(x_train, (len(x_train), desired_size, desired_size, 3)) # adapt this if using `channels_first` image data formaty_train = np.reshape(y_train, (len(y_train), desired_size, desired_size, 1)) # adapt this if using `channels_first` imx_validate = np.reshape(x_validate, (len(x_validate), desired_size, desired_size, 3)) # adapt this if using `channels_first` image data formaty_validate = np.reshape(y_validate, (len(y_validate), desired_size, desired_size, 1)) # adapt this if using `channels_first` imTensorBoard(log_dir='./autoencoder', histogram_freq=0, write_graph=True, write_images=True)from CARUNet import *model=CARUNet(input_size=(desired_size,desired_size,3),start_neurons=16,keep_prob=0.85,lr=1e-3)weight="Chase/Model/CARUNet.h5"restore=Falseif restore and os.path.isfile(weight): model.load_weights(weight)model_checkpoint = ModelCheckpoint(weight, monitor='val_accuracy', verbose=1, save_best_only=False)history=model.fit(x_train, y_train, epochs=50, batch_size=1, # validation_split=0.1, validation_data=(x_validate, y_validate), shuffle=True, callbacks= [TensorBoard(log_dir='./autoencoder'), model_checkpoint])