-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_train.py
275 lines (250 loc) · 9.93 KB
/
new_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# %%
import os
import json
from tqdm import tqdm
import time
import torch
import numpy as np
import pickle
import random
import sys
# %%
#project to be evaluated
pr_type = ['Chart', 'Math', 'Time', 'Lang']
project_title = pr_type[3]
#pr_version = '1'
#project_name = project_title+'_'+pr_version
# %%
cur = "c:/Users/COINSE/Downloads/simfl-extension"
os.chdir(cur)
os.chdir('d4j_data')
base = os.getcwd()
list_project = os.listdir()
os.chdir(cur)
list_project = [x for x in list_project if project_title in x]
# %%
# read data
dist = []
fm = {}
ms = {}
flag = True
x = 0
mn = float('inf')
mx = 0
print('creating dataset')
for project_name in tqdm(list_project):
if project_name == 'Math_38' or project_name == 'Math_6':
continue
if project_title in project_name:
project = project_name.split('_')[0]
project_version = project_name.split('_')[1]
os.chdir(f'd4j_data_fix/{project_name}')
with open('mutant_data_new.pkl', 'rb') as mf:
mutant = pickle.load(mf)
with open('test_data_new.pkl', 'rb') as tf:
test = pickle.load(tf)
with open('method_data_new.pkl', 'rb') as mef:
method = pickle.load(mef)
os.chdir(cur)
r_dict = {}
replacement_index = 0
method_list = []
for m in method:
method_list.append(torch.from_numpy(method[m]['embedding']))
r_dict[method[m]['method_name'].replace(" ", "")] = replacement_index
replacement_index+=1
label_tensor = torch.zeros(len(method_list))
fm[project_name] = (torch.stack(method_list), label_tensor)
if len(r_dict) < mn:
mn = len(r_dict)
if len(r_dict) > mx:
mx = len(r_dict)
for mutant_no in mutant:
if mutant[mutant_no]['killer']:
ct = None
ctd = float('inf')
for t in mutant[mutant_no]['killer']:
d = np.linalg.norm(mutant[mutant_no]['embedding'] - test[t])
if d < ctd:
ctd = d
ct = t
if mutant[mutant_no]['signature'] in r_dict.keys():
ms[(project_name, mutant_no)] = (r_dict[mutant[mutant_no]['signature']], torch.from_numpy(mutant[mutant_no]['embedding']), torch.from_numpy(test[ct]))
x+=len(r_dict)
for m in method:
dist.append(np.linalg.norm(method[m]['embedding'] - test[ct]))
print(len(ms))
print(x / len(ms))
print(mn, mx)
# %%
from version_batch_modelloss import ContrastiveModel, ContrastiveLoss
from torch.utils.data import DataLoader, Dataset, Sampler
import matplotlib.pyplot as plt
torch.cuda.empty_cache()
# %%
class PrecomputedBatchDataset(Dataset):
def __init__(self, fix_method, mutant_sample):
self.method = fix_method
self.mutant = mutant_sample
self.keys = list(mutant_sample.keys())
self.previous_version = None
self.previous_mutant_index = None
self.previous_embedding = None
def __len__(self):
return len(self.mutant)
def __getitem__(self, idx):
k = self.keys[idx]
if self.previous_version !=None:
self.method[self.previous_version][0][self.previous_mutant_index] = self.previous_embedding
self.method[self.previous_version][1][self.previous_mutant_index] = 0.0
#m_placeholder = self.method[k[0]][0].clone()
#b_size = m_placeholder.size()[0]
b_size = self.method[k[0]][0].size()[0]
mut = self.mutant[k]
mutant_idx = mut[0]
##method tensor
#m_placeholder = m_placeholder.view(-1, 768)
self.method[k[0]][0][mutant_idx].view(-1, 768)
# saving
self.previous_version = k[0]
self.previous_mutant_index = mutant_idx
self.previous_embedding = self.method[k[0]][0][mutant_idx].clone()
# replace
self.method[k[0]][0][mutant_idx] = mut[1]
##label tensor
#label = self.method[k[0]][1].clone()
self.method[k[0]][1][mutant_idx] = 1.0
#label[mutant_idx] = 1.0
##test tensor
test_copy = [mut[2]] * b_size
test = torch.stack(test_copy, dim=0)
return self.method[k[0]][0], test, self.method[k[0]][1]
def collate_fn(batch):
return batch[0][0], batch[0][1], batch[0][2]
#torch.multiprocessing.set_start_method('fork', force = True)
#torch.multiprocessing.set_sharing_strategy('file_system')
dataset = PrecomputedBatchDataset(fm, ms)
#dataloader = DataLoader(dataset, batch_size=1, shuffle=True, pin_memory=True, collate_fn=collate_fn)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True, pin_memory=True,
collate_fn=collate_fn, num_workers= 4, prefetch_factor = 2, persistent_workers = True)
#dataloader = DataLoader(dataset, batch_size=1, shuffle=True, pin_memory=True, collate_fn=collate_fn, persistent_workers = True, num_workers = 2)
# %%
#config
num_epoch = 1000
expected_epoch = 100
projection_dim = 768
output_dim = 768
init_scale = 0.75
final_scale = 0.9
dist = sorted(dist)
init_margin = dist[int(init_scale*len(dist))]
final_margin = dist[-1]
threshold = dist[0] / 2
learning_rate = 1e-3
res_weight = 1.0
print(threshold)
print(init_margin)
print(final_margin)
# %%
def compute_gradient_norm(model):
total_norm = 0.0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** 0.5
return total_norm
# %%
#blocked code for using bigger model, progressive margin, and learning rate management (not done during previous result)
arc = 'leaky_relu'
a = 0.1
m = 'euclidean'
model = ContrastiveModel(embedding_dim=768, projection_dim=projection_dim, output_dim=output_dim, mode=m)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
model = torch.nn.DataParallel(model, device_ids=[0, 1])
loss = ContrastiveLoss(margin=init_margin)
optimizer = torch.optim.Adam(
params=filter(lambda p: p.requires_grad, model.parameters()),
lr=learning_rate)
steps_per_epoch = len(ms)
total_steps = steps_per_epoch * expected_epoch
warmup_steps = int(0.1 * total_steps)
power = 2
def warmup_lr_lambda(current_step: int):
if current_step < warmup_steps:
return float(current_step) / float(max(1, warmup_steps))
return 1.0
warmup_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_lr_lambda)
plateau_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, min_lr=1e-6, verbose=True)
model.train()
p_counter = 0
best_val_loss = float('inf')
loss_list = []
positive_loss_list = []
negative_loss_list = []
for epoch in range(num_epoch):
epoch_loss = torch.tensor(0.0, device = device)
positive_epoch_loss = torch.tensor(0.0, device = device)
negative_epoch_loss = torch.tensor(0.0, device = device)
train_time = []
epoch_start = time.perf_counter()
for batch_idx, (method_batch, test_batch, label) in tqdm(enumerate(dataloader)):
method_batch = method_batch.to(device, non_blocking=True)
test_batch = test_batch.to(device, non_blocking=True)
label = label.to(device, non_blocking=True)
training_start = time.perf_counter()
output = model(test_batch, method_batch)
optimizer.zero_grad()
l, pl, nl = loss(output, label)
l.backward()
optimizer.step()
step = steps_per_epoch*epoch+batch_idx
if step < warmup_steps:
warmup_scheduler.step()
epoch_loss += l
positive_epoch_loss += pl
negative_epoch_loss += nl
training_end = time.perf_counter()
train_time.append(training_end - training_start)
epoch_end = time.perf_counter()
grad_norm = compute_gradient_norm(model)
avg_epoch_loss = (epoch_loss / len(ms)).item()
positive_avg_epoch_loss = (positive_epoch_loss / len(ms)).item()
negative_avg_epoch_loss = (negative_epoch_loss / len(ms)).item()
loss_list.append(avg_epoch_loss)
positive_loss_list.append(positive_avg_epoch_loss)
negative_loss_list.append(negative_avg_epoch_loss)
print(f'epoch {epoch+1} took: training - {sum(train_time)} seconds, total - {epoch_end - epoch_start} seconds')
print(f'epoch {epoch+1} trained with {x} data, average loss:{avg_epoch_loss}, Gradient_norm:{grad_norm}, counter:{p_counter}')
if step >= warmup_steps:
plateau_scheduler.step(avg_epoch_loss)
if avg_epoch_loss<best_val_loss:
best_val_loss = avg_epoch_loss
p_counter = 0
os.makedirs(f'new-model/{project_title}/version_batch', exist_ok=True)
torch.save(model.state_dict(), f'new-model/{project_title}/version_batch/model_{arc}_{a}_{m}_best.pth')
else:
p_counter+=1
if p_counter >= 5:
if epoch+1>30:
break
if (epoch+1) % 5 == 0:
os.makedirs(f'new-model/{project_title}/version_batch', exist_ok=True)
torch.save(model.state_dict(), f'new-model/{project_title}/version_batch/model_{arc}_{a}_{m}_{epoch+1}.pth')
epochs = list(range(1, len(loss_list)+1))
plt.figure(figsize=(8, 6))
plt.plot(epochs, loss_list, marker='o', linestyle='-', color='g', label='Training Loss')
plt.plot(epochs, positive_loss_list, marker='o', linestyle='-', color='b', label='Positive Training Loss')
plt.plot(epochs, negative_loss_list, marker='o', linestyle='-', color='r', label='Negative Training Loss')
# Adding titles and labels
plt.title('Training Loss Over Epochs', fontsize=16)
plt.xlabel('Epoch', fontsize=14)
plt.ylabel('Loss', fontsize=14)
plt.grid(True)
plt.legend(fontsize=12)
os.makedirs(f'CROFL results/version_batch/{project_title}', exist_ok=True)
plt.savefig(f'CROFL results/version_batch/{project_title}/{arc}_newloss_{m}.png', format="png", dpi=300, bbox_inches="tight")
plt.close()
os.makedirs(f'new-model/{project_title}/version_batch', exist_ok=True)
torch.save(model.state_dict(), f'new-model/{project_title}/version_batch/model_{arc}_{a}_{m}.pth')