Skip to content

Commit fb45513

Browse files
Rollup merge of rust-lang#107522 - Sp00ph:introselect, r=Amanieu
Add Median of Medians fallback to introselect Fixes rust-lang#102451. This PR is a follow up to rust-lang#106997. It adds a Fast Deterministic Selection implementation as a fallback to the introselect algorithm used by `select_nth_unstable`. This allows it to guarantee O(n) worst case running time, while maintaining good performance in all cases. This would fix rust-lang#102451, which was opened because the `select_nth_unstable` docs falsely claimed that it had O(n) worst case performance, even though it was actually quadratic in the worst case. rust-lang#106997 improved the worst case complexity to O(n log n) by using heapsort as a fallback, and this PR further improves it to O(n) (this would also make rust-lang#106933 unnecessary). It also improves the actual runtime if the fallback gets called: Using a pathological input of size `1 << 19` (see the playground link in rust-lang#102451), calculating the median is roughly 3x faster using fast deterministic selection as a fallback than it is using heapsort. The downside to this is less code reuse between the sorting and selection algorithms, but I don't think it's that bad. The additional algorithms are ~250 LOC with no `unsafe` blocks (I tried using unsafe to avoid bounds checks but it didn't noticeably improve the performance). I also let it fuzz for a while against the current `select_nth_unstable` implementation to ensure correctness, and it seems to still fulfill all the necessary postconditions. cc `@scottmcm` who reviewed rust-lang#106997
2 parents a2b1646 + fd5fa01 commit fb45513

File tree

3 files changed

+311
-140
lines changed

3 files changed

+311
-140
lines changed

library/core/src/slice/mod.rs

+4-3
Original file line numberDiff line numberDiff line change
@@ -42,6 +42,7 @@ mod index;
4242
mod iter;
4343
mod raw;
4444
mod rotate;
45+
mod select;
4546
mod specialize;
4647

4748
#[unstable(feature = "str_internals", issue = "none")]
@@ -3034,7 +3035,7 @@ impl<T> [T] {
30343035
where
30353036
T: Ord,
30363037
{
3037-
sort::partition_at_index(self, index, T::lt)
3038+
select::partition_at_index(self, index, T::lt)
30383039
}
30393040

30403041
/// Reorder the slice with a comparator function such that the element at `index` is at its
@@ -3089,7 +3090,7 @@ impl<T> [T] {
30893090
where
30903091
F: FnMut(&T, &T) -> Ordering,
30913092
{
3092-
sort::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3093+
select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
30933094
}
30943095

30953096
/// Reorder the slice with a key extraction function such that the element at `index` is at its
@@ -3145,7 +3146,7 @@ impl<T> [T] {
31453146
F: FnMut(&T) -> K,
31463147
K: Ord,
31473148
{
3148-
sort::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3149+
select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
31493150
}
31503151

31513152
/// Moves all consecutive repeated elements to the end of the slice according to the

library/core/src/slice/select.rs

+302
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,302 @@
1+
//! Slice selection
2+
//!
3+
//! This module contains the implementation for `slice::select_nth_unstable`.
4+
//! It uses an introselect algorithm based on Orson Peters' pattern-defeating quicksort,
5+
//! published at: <https://github.com/orlp/pdqsort>
6+
//!
7+
//! The fallback algorithm used for introselect is Median of Medians using Tukey's Ninther
8+
//! for pivot selection. Using this as a fallback ensures O(n) worst case running time with
9+
//! better performance than one would get using heapsort as fallback.
10+
11+
use crate::cmp;
12+
use crate::mem::{self, SizedTypeProperties};
13+
use crate::slice::sort::{
14+
break_patterns, choose_pivot, insertion_sort_shift_left, partition, partition_equal,
15+
};
16+
17+
// For slices of up to this length it's probably faster to simply sort them.
18+
// Defined at the module scope because it's used in multiple functions.
19+
const MAX_INSERTION: usize = 10;
20+
21+
fn partition_at_index_loop<'a, T, F>(
22+
mut v: &'a mut [T],
23+
mut index: usize,
24+
is_less: &mut F,
25+
mut pred: Option<&'a T>,
26+
) where
27+
F: FnMut(&T, &T) -> bool,
28+
{
29+
// Limit the amount of iterations and fall back to fast deterministic selection
30+
// to ensure O(n) worst case running time. This limit needs to be constant, because
31+
// using `ilog2(len)` like in `sort` would result in O(n log n) time complexity.
32+
// The exact value of the limit is chosen somewhat arbitrarily, but for most inputs bad pivot
33+
// selections should be relatively rare, so the limit usually shouldn't be reached
34+
// anyways.
35+
let mut limit = 16;
36+
37+
// True if the last partitioning was reasonably balanced.
38+
let mut was_balanced = true;
39+
40+
loop {
41+
if v.len() <= MAX_INSERTION {
42+
if v.len() > 1 {
43+
insertion_sort_shift_left(v, 1, is_less);
44+
}
45+
return;
46+
}
47+
48+
if limit == 0 {
49+
median_of_medians(v, is_less, index);
50+
return;
51+
}
52+
53+
// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
54+
// some elements around. Hopefully we'll choose a better pivot this time.
55+
if !was_balanced {
56+
break_patterns(v);
57+
limit -= 1;
58+
}
59+
60+
// Choose a pivot
61+
let (pivot, _) = choose_pivot(v, is_less);
62+
63+
// If the chosen pivot is equal to the predecessor, then it's the smallest element in the
64+
// slice. Partition the slice into elements equal to and elements greater than the pivot.
65+
// This case is usually hit when the slice contains many duplicate elements.
66+
if let Some(p) = pred {
67+
if !is_less(p, &v[pivot]) {
68+
let mid = partition_equal(v, pivot, is_less);
69+
70+
// If we've passed our index, then we're good.
71+
if mid > index {
72+
return;
73+
}
74+
75+
// Otherwise, continue sorting elements greater than the pivot.
76+
v = &mut v[mid..];
77+
index = index - mid;
78+
pred = None;
79+
continue;
80+
}
81+
}
82+
83+
let (mid, _) = partition(v, pivot, is_less);
84+
was_balanced = cmp::min(mid, v.len() - mid) >= v.len() / 8;
85+
86+
// Split the slice into `left`, `pivot`, and `right`.
87+
let (left, right) = v.split_at_mut(mid);
88+
let (pivot, right) = right.split_at_mut(1);
89+
let pivot = &pivot[0];
90+
91+
if mid < index {
92+
v = right;
93+
index = index - mid - 1;
94+
pred = Some(pivot);
95+
} else if mid > index {
96+
v = left;
97+
} else {
98+
// If mid == index, then we're done, since partition() guaranteed that all elements
99+
// after mid are greater than or equal to mid.
100+
return;
101+
}
102+
}
103+
}
104+
105+
/// Helper function that returns the index of the minimum element in the slice using the given
106+
/// comparator function
107+
fn min_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
108+
slice
109+
.iter()
110+
.enumerate()
111+
.reduce(|acc, t| if is_less(t.1, acc.1) { t } else { acc })
112+
.map(|(i, _)| i)
113+
}
114+
115+
/// Helper function that returns the index of the maximum element in the slice using the given
116+
/// comparator function
117+
fn max_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
118+
slice
119+
.iter()
120+
.enumerate()
121+
.reduce(|acc, t| if is_less(acc.1, t.1) { t } else { acc })
122+
.map(|(i, _)| i)
123+
}
124+
125+
/// Reorder the slice such that the element at `index` is at its final sorted position.
126+
pub fn partition_at_index<T, F>(
127+
v: &mut [T],
128+
index: usize,
129+
mut is_less: F,
130+
) -> (&mut [T], &mut T, &mut [T])
131+
where
132+
F: FnMut(&T, &T) -> bool,
133+
{
134+
if index >= v.len() {
135+
panic!("partition_at_index index {} greater than length of slice {}", index, v.len());
136+
}
137+
138+
if T::IS_ZST {
139+
// Sorting has no meaningful behavior on zero-sized types. Do nothing.
140+
} else if index == v.len() - 1 {
141+
// Find max element and place it in the last position of the array. We're free to use
142+
// `unwrap()` here because we know v must not be empty.
143+
let max_idx = max_index(v, &mut is_less).unwrap();
144+
v.swap(max_idx, index);
145+
} else if index == 0 {
146+
// Find min element and place it in the first position of the array. We're free to use
147+
// `unwrap()` here because we know v must not be empty.
148+
let min_idx = min_index(v, &mut is_less).unwrap();
149+
v.swap(min_idx, index);
150+
} else {
151+
partition_at_index_loop(v, index, &mut is_less, None);
152+
}
153+
154+
let (left, right) = v.split_at_mut(index);
155+
let (pivot, right) = right.split_at_mut(1);
156+
let pivot = &mut pivot[0];
157+
(left, pivot, right)
158+
}
159+
160+
/// Selection algorithm to select the k-th element from the slice in guaranteed O(n) time.
161+
/// This is essentially a quickselect that uses Tukey's Ninther for pivot selection
162+
fn median_of_medians<T, F: FnMut(&T, &T) -> bool>(mut v: &mut [T], is_less: &mut F, mut k: usize) {
163+
// Since this function isn't public, it should never be called with an out-of-bounds index.
164+
debug_assert!(k < v.len());
165+
166+
// If T is as ZST, `partition_at_index` will already return early.
167+
debug_assert!(!T::IS_ZST);
168+
169+
// We now know that `k < v.len() <= isize::MAX`
170+
loop {
171+
if v.len() <= MAX_INSERTION {
172+
if v.len() > 1 {
173+
insertion_sort_shift_left(v, 1, is_less);
174+
}
175+
return;
176+
}
177+
178+
// `median_of_{minima,maxima}` can't handle the extreme cases of the first/last element,
179+
// so we catch them here and just do a linear search.
180+
if k == v.len() - 1 {
181+
// Find max element and place it in the last position of the array. We're free to use
182+
// `unwrap()` here because we know v must not be empty.
183+
let max_idx = max_index(v, is_less).unwrap();
184+
v.swap(max_idx, k);
185+
return;
186+
} else if k == 0 {
187+
// Find min element and place it in the first position of the array. We're free to use
188+
// `unwrap()` here because we know v must not be empty.
189+
let min_idx = min_index(v, is_less).unwrap();
190+
v.swap(min_idx, k);
191+
return;
192+
}
193+
194+
let p = median_of_ninthers(v, is_less);
195+
196+
if p == k {
197+
return;
198+
} else if p > k {
199+
v = &mut v[..p];
200+
} else {
201+
// Since `p < k < v.len()`, `p + 1` doesn't overflow and is
202+
// a valid index into the slice.
203+
v = &mut v[p + 1..];
204+
k -= p + 1;
205+
}
206+
}
207+
}
208+
209+
// Optimized for when `k` lies somewhere in the middle of the slice. Selects a pivot
210+
// as close as possible to the median of the slice. For more details on how the algorithm
211+
// operates, refer to the paper <https://drops.dagstuhl.de/opus/volltexte/2017/7612/pdf/LIPIcs-SEA-2017-24.pdf>.
212+
fn median_of_ninthers<T, F: FnMut(&T, &T) -> bool>(v: &mut [T], is_less: &mut F) -> usize {
213+
// use `saturating_mul` so the multiplication doesn't overflow on 16-bit platforms.
214+
let frac = if v.len() <= 1024 {
215+
v.len() / 12
216+
} else if v.len() <= 128_usize.saturating_mul(1024) {
217+
v.len() / 64
218+
} else {
219+
v.len() / 1024
220+
};
221+
222+
let pivot = frac / 2;
223+
let lo = v.len() / 2 - pivot;
224+
let hi = frac + lo;
225+
let gap = (v.len() - 9 * frac) / 4;
226+
let mut a = lo - 4 * frac - gap;
227+
let mut b = hi + gap;
228+
for i in lo..hi {
229+
ninther(v, is_less, a, i - frac, b, a + 1, i, b + 1, a + 2, i + frac, b + 2);
230+
a += 3;
231+
b += 3;
232+
}
233+
234+
median_of_medians(&mut v[lo..lo + frac], is_less, pivot);
235+
partition(v, lo + pivot, is_less).0
236+
}
237+
238+
/// Moves around the 9 elements at the indices a..i, such that
239+
/// `v[d]` contains the median of the 9 elements and the other
240+
/// elements are partitioned around it.
241+
fn ninther<T, F: FnMut(&T, &T) -> bool>(
242+
v: &mut [T],
243+
is_less: &mut F,
244+
a: usize,
245+
mut b: usize,
246+
c: usize,
247+
mut d: usize,
248+
e: usize,
249+
mut f: usize,
250+
g: usize,
251+
mut h: usize,
252+
i: usize,
253+
) {
254+
b = median_idx(v, is_less, a, b, c);
255+
h = median_idx(v, is_less, g, h, i);
256+
if is_less(&v[h], &v[b]) {
257+
mem::swap(&mut b, &mut h);
258+
}
259+
if is_less(&v[f], &v[d]) {
260+
mem::swap(&mut d, &mut f);
261+
}
262+
if is_less(&v[e], &v[d]) {
263+
// do nothing
264+
} else if is_less(&v[f], &v[e]) {
265+
d = f;
266+
} else {
267+
if is_less(&v[e], &v[b]) {
268+
v.swap(e, b);
269+
} else if is_less(&v[h], &v[e]) {
270+
v.swap(e, h);
271+
}
272+
return;
273+
}
274+
if is_less(&v[d], &v[b]) {
275+
d = b;
276+
} else if is_less(&v[h], &v[d]) {
277+
d = h;
278+
}
279+
280+
v.swap(d, e);
281+
}
282+
283+
/// returns the index pointing to the median of the 3
284+
/// elements `v[a]`, `v[b]` and `v[c]`
285+
fn median_idx<T, F: FnMut(&T, &T) -> bool>(
286+
v: &[T],
287+
is_less: &mut F,
288+
mut a: usize,
289+
b: usize,
290+
mut c: usize,
291+
) -> usize {
292+
if is_less(&v[c], &v[a]) {
293+
mem::swap(&mut a, &mut c);
294+
}
295+
if is_less(&v[c], &v[b]) {
296+
return c;
297+
}
298+
if is_less(&v[b], &v[a]) {
299+
return a;
300+
}
301+
b
302+
}

0 commit comments

Comments
 (0)