|
| 1 | +//! Slice selection |
| 2 | +//! |
| 3 | +//! This module contains the implementation for `slice::select_nth_unstable`. |
| 4 | +//! It uses an introselect algorithm based on Orson Peters' pattern-defeating quicksort, |
| 5 | +//! published at: <https://github.com/orlp/pdqsort> |
| 6 | +//! |
| 7 | +//! The fallback algorithm used for introselect is Median of Medians using Tukey's Ninther |
| 8 | +//! for pivot selection. Using this as a fallback ensures O(n) worst case running time with |
| 9 | +//! better performance than one would get using heapsort as fallback. |
| 10 | +
|
| 11 | +use crate::cmp; |
| 12 | +use crate::mem::{self, SizedTypeProperties}; |
| 13 | +use crate::slice::sort::{ |
| 14 | + break_patterns, choose_pivot, insertion_sort_shift_left, partition, partition_equal, |
| 15 | +}; |
| 16 | + |
| 17 | +// For slices of up to this length it's probably faster to simply sort them. |
| 18 | +// Defined at the module scope because it's used in multiple functions. |
| 19 | +const MAX_INSERTION: usize = 10; |
| 20 | + |
| 21 | +fn partition_at_index_loop<'a, T, F>( |
| 22 | + mut v: &'a mut [T], |
| 23 | + mut index: usize, |
| 24 | + is_less: &mut F, |
| 25 | + mut pred: Option<&'a T>, |
| 26 | +) where |
| 27 | + F: FnMut(&T, &T) -> bool, |
| 28 | +{ |
| 29 | + // Limit the amount of iterations and fall back to fast deterministic selection |
| 30 | + // to ensure O(n) worst case running time. This limit needs to be constant, because |
| 31 | + // using `ilog2(len)` like in `sort` would result in O(n log n) time complexity. |
| 32 | + // The exact value of the limit is chosen somewhat arbitrarily, but for most inputs bad pivot |
| 33 | + // selections should be relatively rare, so the limit usually shouldn't be reached |
| 34 | + // anyways. |
| 35 | + let mut limit = 16; |
| 36 | + |
| 37 | + // True if the last partitioning was reasonably balanced. |
| 38 | + let mut was_balanced = true; |
| 39 | + |
| 40 | + loop { |
| 41 | + if v.len() <= MAX_INSERTION { |
| 42 | + if v.len() > 1 { |
| 43 | + insertion_sort_shift_left(v, 1, is_less); |
| 44 | + } |
| 45 | + return; |
| 46 | + } |
| 47 | + |
| 48 | + if limit == 0 { |
| 49 | + median_of_medians(v, is_less, index); |
| 50 | + return; |
| 51 | + } |
| 52 | + |
| 53 | + // If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling |
| 54 | + // some elements around. Hopefully we'll choose a better pivot this time. |
| 55 | + if !was_balanced { |
| 56 | + break_patterns(v); |
| 57 | + limit -= 1; |
| 58 | + } |
| 59 | + |
| 60 | + // Choose a pivot |
| 61 | + let (pivot, _) = choose_pivot(v, is_less); |
| 62 | + |
| 63 | + // If the chosen pivot is equal to the predecessor, then it's the smallest element in the |
| 64 | + // slice. Partition the slice into elements equal to and elements greater than the pivot. |
| 65 | + // This case is usually hit when the slice contains many duplicate elements. |
| 66 | + if let Some(p) = pred { |
| 67 | + if !is_less(p, &v[pivot]) { |
| 68 | + let mid = partition_equal(v, pivot, is_less); |
| 69 | + |
| 70 | + // If we've passed our index, then we're good. |
| 71 | + if mid > index { |
| 72 | + return; |
| 73 | + } |
| 74 | + |
| 75 | + // Otherwise, continue sorting elements greater than the pivot. |
| 76 | + v = &mut v[mid..]; |
| 77 | + index = index - mid; |
| 78 | + pred = None; |
| 79 | + continue; |
| 80 | + } |
| 81 | + } |
| 82 | + |
| 83 | + let (mid, _) = partition(v, pivot, is_less); |
| 84 | + was_balanced = cmp::min(mid, v.len() - mid) >= v.len() / 8; |
| 85 | + |
| 86 | + // Split the slice into `left`, `pivot`, and `right`. |
| 87 | + let (left, right) = v.split_at_mut(mid); |
| 88 | + let (pivot, right) = right.split_at_mut(1); |
| 89 | + let pivot = &pivot[0]; |
| 90 | + |
| 91 | + if mid < index { |
| 92 | + v = right; |
| 93 | + index = index - mid - 1; |
| 94 | + pred = Some(pivot); |
| 95 | + } else if mid > index { |
| 96 | + v = left; |
| 97 | + } else { |
| 98 | + // If mid == index, then we're done, since partition() guaranteed that all elements |
| 99 | + // after mid are greater than or equal to mid. |
| 100 | + return; |
| 101 | + } |
| 102 | + } |
| 103 | +} |
| 104 | + |
| 105 | +/// Helper function that returns the index of the minimum element in the slice using the given |
| 106 | +/// comparator function |
| 107 | +fn min_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> { |
| 108 | + slice |
| 109 | + .iter() |
| 110 | + .enumerate() |
| 111 | + .reduce(|acc, t| if is_less(t.1, acc.1) { t } else { acc }) |
| 112 | + .map(|(i, _)| i) |
| 113 | +} |
| 114 | + |
| 115 | +/// Helper function that returns the index of the maximum element in the slice using the given |
| 116 | +/// comparator function |
| 117 | +fn max_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> { |
| 118 | + slice |
| 119 | + .iter() |
| 120 | + .enumerate() |
| 121 | + .reduce(|acc, t| if is_less(acc.1, t.1) { t } else { acc }) |
| 122 | + .map(|(i, _)| i) |
| 123 | +} |
| 124 | + |
| 125 | +/// Reorder the slice such that the element at `index` is at its final sorted position. |
| 126 | +pub fn partition_at_index<T, F>( |
| 127 | + v: &mut [T], |
| 128 | + index: usize, |
| 129 | + mut is_less: F, |
| 130 | +) -> (&mut [T], &mut T, &mut [T]) |
| 131 | +where |
| 132 | + F: FnMut(&T, &T) -> bool, |
| 133 | +{ |
| 134 | + if index >= v.len() { |
| 135 | + panic!("partition_at_index index {} greater than length of slice {}", index, v.len()); |
| 136 | + } |
| 137 | + |
| 138 | + if T::IS_ZST { |
| 139 | + // Sorting has no meaningful behavior on zero-sized types. Do nothing. |
| 140 | + } else if index == v.len() - 1 { |
| 141 | + // Find max element and place it in the last position of the array. We're free to use |
| 142 | + // `unwrap()` here because we know v must not be empty. |
| 143 | + let max_idx = max_index(v, &mut is_less).unwrap(); |
| 144 | + v.swap(max_idx, index); |
| 145 | + } else if index == 0 { |
| 146 | + // Find min element and place it in the first position of the array. We're free to use |
| 147 | + // `unwrap()` here because we know v must not be empty. |
| 148 | + let min_idx = min_index(v, &mut is_less).unwrap(); |
| 149 | + v.swap(min_idx, index); |
| 150 | + } else { |
| 151 | + partition_at_index_loop(v, index, &mut is_less, None); |
| 152 | + } |
| 153 | + |
| 154 | + let (left, right) = v.split_at_mut(index); |
| 155 | + let (pivot, right) = right.split_at_mut(1); |
| 156 | + let pivot = &mut pivot[0]; |
| 157 | + (left, pivot, right) |
| 158 | +} |
| 159 | + |
| 160 | +/// Selection algorithm to select the k-th element from the slice in guaranteed O(n) time. |
| 161 | +/// This is essentially a quickselect that uses Tukey's Ninther for pivot selection |
| 162 | +fn median_of_medians<T, F: FnMut(&T, &T) -> bool>(mut v: &mut [T], is_less: &mut F, mut k: usize) { |
| 163 | + // Since this function isn't public, it should never be called with an out-of-bounds index. |
| 164 | + debug_assert!(k < v.len()); |
| 165 | + |
| 166 | + // If T is as ZST, `partition_at_index` will already return early. |
| 167 | + debug_assert!(!T::IS_ZST); |
| 168 | + |
| 169 | + // We now know that `k < v.len() <= isize::MAX` |
| 170 | + loop { |
| 171 | + if v.len() <= MAX_INSERTION { |
| 172 | + if v.len() > 1 { |
| 173 | + insertion_sort_shift_left(v, 1, is_less); |
| 174 | + } |
| 175 | + return; |
| 176 | + } |
| 177 | + |
| 178 | + // `median_of_{minima,maxima}` can't handle the extreme cases of the first/last element, |
| 179 | + // so we catch them here and just do a linear search. |
| 180 | + if k == v.len() - 1 { |
| 181 | + // Find max element and place it in the last position of the array. We're free to use |
| 182 | + // `unwrap()` here because we know v must not be empty. |
| 183 | + let max_idx = max_index(v, is_less).unwrap(); |
| 184 | + v.swap(max_idx, k); |
| 185 | + return; |
| 186 | + } else if k == 0 { |
| 187 | + // Find min element and place it in the first position of the array. We're free to use |
| 188 | + // `unwrap()` here because we know v must not be empty. |
| 189 | + let min_idx = min_index(v, is_less).unwrap(); |
| 190 | + v.swap(min_idx, k); |
| 191 | + return; |
| 192 | + } |
| 193 | + |
| 194 | + let p = median_of_ninthers(v, is_less); |
| 195 | + |
| 196 | + if p == k { |
| 197 | + return; |
| 198 | + } else if p > k { |
| 199 | + v = &mut v[..p]; |
| 200 | + } else { |
| 201 | + // Since `p < k < v.len()`, `p + 1` doesn't overflow and is |
| 202 | + // a valid index into the slice. |
| 203 | + v = &mut v[p + 1..]; |
| 204 | + k -= p + 1; |
| 205 | + } |
| 206 | + } |
| 207 | +} |
| 208 | + |
| 209 | +// Optimized for when `k` lies somewhere in the middle of the slice. Selects a pivot |
| 210 | +// as close as possible to the median of the slice. For more details on how the algorithm |
| 211 | +// operates, refer to the paper <https://drops.dagstuhl.de/opus/volltexte/2017/7612/pdf/LIPIcs-SEA-2017-24.pdf>. |
| 212 | +fn median_of_ninthers<T, F: FnMut(&T, &T) -> bool>(v: &mut [T], is_less: &mut F) -> usize { |
| 213 | + // use `saturating_mul` so the multiplication doesn't overflow on 16-bit platforms. |
| 214 | + let frac = if v.len() <= 1024 { |
| 215 | + v.len() / 12 |
| 216 | + } else if v.len() <= 128_usize.saturating_mul(1024) { |
| 217 | + v.len() / 64 |
| 218 | + } else { |
| 219 | + v.len() / 1024 |
| 220 | + }; |
| 221 | + |
| 222 | + let pivot = frac / 2; |
| 223 | + let lo = v.len() / 2 - pivot; |
| 224 | + let hi = frac + lo; |
| 225 | + let gap = (v.len() - 9 * frac) / 4; |
| 226 | + let mut a = lo - 4 * frac - gap; |
| 227 | + let mut b = hi + gap; |
| 228 | + for i in lo..hi { |
| 229 | + ninther(v, is_less, a, i - frac, b, a + 1, i, b + 1, a + 2, i + frac, b + 2); |
| 230 | + a += 3; |
| 231 | + b += 3; |
| 232 | + } |
| 233 | + |
| 234 | + median_of_medians(&mut v[lo..lo + frac], is_less, pivot); |
| 235 | + partition(v, lo + pivot, is_less).0 |
| 236 | +} |
| 237 | + |
| 238 | +/// Moves around the 9 elements at the indices a..i, such that |
| 239 | +/// `v[d]` contains the median of the 9 elements and the other |
| 240 | +/// elements are partitioned around it. |
| 241 | +fn ninther<T, F: FnMut(&T, &T) -> bool>( |
| 242 | + v: &mut [T], |
| 243 | + is_less: &mut F, |
| 244 | + a: usize, |
| 245 | + mut b: usize, |
| 246 | + c: usize, |
| 247 | + mut d: usize, |
| 248 | + e: usize, |
| 249 | + mut f: usize, |
| 250 | + g: usize, |
| 251 | + mut h: usize, |
| 252 | + i: usize, |
| 253 | +) { |
| 254 | + b = median_idx(v, is_less, a, b, c); |
| 255 | + h = median_idx(v, is_less, g, h, i); |
| 256 | + if is_less(&v[h], &v[b]) { |
| 257 | + mem::swap(&mut b, &mut h); |
| 258 | + } |
| 259 | + if is_less(&v[f], &v[d]) { |
| 260 | + mem::swap(&mut d, &mut f); |
| 261 | + } |
| 262 | + if is_less(&v[e], &v[d]) { |
| 263 | + // do nothing |
| 264 | + } else if is_less(&v[f], &v[e]) { |
| 265 | + d = f; |
| 266 | + } else { |
| 267 | + if is_less(&v[e], &v[b]) { |
| 268 | + v.swap(e, b); |
| 269 | + } else if is_less(&v[h], &v[e]) { |
| 270 | + v.swap(e, h); |
| 271 | + } |
| 272 | + return; |
| 273 | + } |
| 274 | + if is_less(&v[d], &v[b]) { |
| 275 | + d = b; |
| 276 | + } else if is_less(&v[h], &v[d]) { |
| 277 | + d = h; |
| 278 | + } |
| 279 | + |
| 280 | + v.swap(d, e); |
| 281 | +} |
| 282 | + |
| 283 | +/// returns the index pointing to the median of the 3 |
| 284 | +/// elements `v[a]`, `v[b]` and `v[c]` |
| 285 | +fn median_idx<T, F: FnMut(&T, &T) -> bool>( |
| 286 | + v: &[T], |
| 287 | + is_less: &mut F, |
| 288 | + mut a: usize, |
| 289 | + b: usize, |
| 290 | + mut c: usize, |
| 291 | +) -> usize { |
| 292 | + if is_less(&v[c], &v[a]) { |
| 293 | + mem::swap(&mut a, &mut c); |
| 294 | + } |
| 295 | + if is_less(&v[c], &v[b]) { |
| 296 | + return c; |
| 297 | + } |
| 298 | + if is_less(&v[b], &v[a]) { |
| 299 | + return a; |
| 300 | + } |
| 301 | + b |
| 302 | +} |
0 commit comments