-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclassification_with_missing_generation.yaml
51 lines (36 loc) · 2.46 KB
/
classification_with_missing_generation.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# @package _global_
experiment_name: ${db.name}_${model.name}_${preprocessing.imputer.method}_with_missing_generation # DO NOT CHANGE
pipeline: missing # DO NOT CHANGE
seed: 42 # Seed for randomness control
verbose: 1 # 0 or 1, verbosity of the training
continue_experiment: False # True or False, if the experiment should be continued from where it was interrupted
missing_percentages: [0.0, 0.05, 0.1, 0.25, 0.5, 0.75]
defaults: # DO NOT CHANGE
- _self_ # DO NOT CHANGE
- paths@: default # DO NOT CHANGE
- paths: experiment_paths # DO NOT CHANGE
- databases@db: adult # Name of the configuration file of the dataset
- cross_validation@test_cv: stratifiedkfold # Cross-validation strategy for the test set
- cross_validation@val_cv: holdout # Cross-validation strategy for the validation set
- preprocessing/missing_generation@missing_generation.train: MCAR_global # DO NOT CHANGE
- preprocessing/missing_generation@missing_generation.val: no_generation # DO NOT CHANGE
- preprocessing/missing_generation@missing_generation.test: MCAR_global # DO NOT CHANGE
- preprocessing/numerical: normalize # normalize or standardize
- preprocessing/categorical: categorical_encode # categorical_encode or one_hot_encode
- preprocessing/imputer: no_imputation # simple or knn or iterative or no_imputation
- model_type_params@dl_params: dl_params # DO NOT CHANGE
- model_type_params@ml_params: ml_params # DO NOT CHANGE
- model: naim # Name of the model to use
- model_type_params@train.dl_params: dl_params # DO NOT CHANGE
- initializer@train.initializer: xavier_normal # DO NOT CHANGE
- loss@train.loss.CE: cross_entropy # DO NOT CHANGE
- regularizer@train.regularizer.l1: l1 # DO NOT CHANGE
- regularizer@train.regularizer.l2: l2 # DO NOT CHANGE
- optimizer@train.optimizer: adam # DO NOT CHANGE
- train_utils@train.manager: train_manager # DO NOT REMOVE
- metric@train.set_metrics.auc: auc # Metric to use for the early stopping
- metric@performance_metrics.auc: auc # Metric to use for the performance evaluation
- metric@performance_metrics.accuracy: accuracy # Metric to use for the performance evaluation
- metric@performance_metrics.recall: recall # Metric to use for the performance evaluation
- metric@performance_metrics.precision: precision # Metric to use for the performance evaluation
- metric@performance_metrics.f1_score: f1_score # Metric to use for the performance evaluation