forked from djgroen/flee-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_toy_escape.py
65 lines (47 loc) · 2.14 KB
/
test_toy_escape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import flee.flee as flee
import datamanager.handle_refugee_data as handle_refugee_data
import numpy as np
import outputanalysis.analysis as a
"""
Generation 1 code. Incorporates only distance, travel always takes one day.
"""
if __name__ == "__main__":
print("Testing basic data handling and simulation kernel.")
end_time = 10
e = flee.Ecosystem()
l1 = e.addLocation("A", movechance=0.3)
l2 = e.addLocation("B", movechance=0.0)
l3 = e.addLocation("C", movechance=0.0)
l4 = e.addLocation("D", movechance=0.0)
e.linkUp("A","B","834.0")
e.linkUp("A","C","1368.0")
e.linkUp("A","D","536.0")
d = handle_refugee_data.RefugeeTable(csvformat="generic", data_directory="test_data", start_date="2010-01-01", data_layout="data_layout.csv")
for t in range(0,end_time):
new_refs = d.get_new_refugees(t)
# Insert refugee agents
for i in range(0, new_refs):
e.addAgent(location=l1)
# Propagate the model by one time step.
e.evolve()
print(t, l1.numAgents+l2.numAgents+l3.numAgents+l4.numAgents, l1.numAgents, l2.numAgents, l3.numAgents, l4.numAgents)
assert t==9
assert l1.numAgents+l2.numAgents+l3.numAgents+l4.numAgents==635 # This includes refugee counts from Fassala as well
#79 746 24601 14784 38188
print("Test successful!")
"""
l2_data = d.get_field("Mauritania", t) - d.get_field("Mauritania", 0)
l3_data = d.get_field("Niger", t) - d.get_field("Niger", 0)
l4_data = d.get_field("Burkina Faso", t) - d.get_field("Burkina Faso", 0)
errors = [a.rel_error(l2.numAgents,l2_data), a.rel_error(l3.numAgents,l3_data), a.rel_error(l4.numAgents,l4_data)]
print "Kiffa: ", l2.numAgents, ", data: ", l2_data, ", error: ", errors[0]
print "Niamey: ", l3.numAgents, ", data: ", l3_data, ", error: ", errors[1]
print "Bobo-Dioulasso: ", l4.numAgents,", data: ", l4_data, ", error: ", errors[2]
print "Cumulative error: ", np.sum(errors), ", Squared error: ", np.sqrt(np.sum(np.power(errors,2)))
if np.abs(np.sum(errors) - 0.495521376979) > 0.1:
print "TEST FAILED."
if np.sqrt(np.sum(np.power(errors,2))) > 0.33+0.03:
print "TEST FAILED."
else:
print "TEST SUCCESSFUL."
"""