This repository has been archived by the owner on Dec 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathgenerate_all.py
58 lines (47 loc) · 2.73 KB
/
generate_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""General-purpose training script for image-to-image translation.
This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and
different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization).
You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model').
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' to resume your previous training.
Example:
Train a CycleGAN model:
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Train a pix2pix model:
python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/train_options.py for more training options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import time
from options.test_options import TestOptions
from datasets import create_dataset
from models import create_model
import os, torch, shutil
from tqdm import tqdm
if __name__ == '__main__':
opt = TestOptions().parse() # get training options
if opt.square:
opt.crop_size = (opt.crop_size, opt.crop_size)
else:
opt.crop_size = (opt.crop_size, max(1,int(opt.crop_size*1.0/256*176)))
print("crop_size:", opt.crop_size)
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
total_iters = 0 # the total number of training iterations
model.eval()
generate_out_dir = os.path.join(opt.eval_output_dir + "_%s"%opt.epoch)
print("generate images at %s" % generate_out_dir)
os.mkdir(generate_out_dir)
model.isTrain = False
# generate
count = 0
for i, data in tqdm(enumerate(dataset), "generating for test split"): # inner loop within one epoch
with torch.no_grad():
model.set_input(data) # unpack data from dataset and apply preprocessing
model.forward()
count = model.save_batch(generate_out_dir, count)