-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
42 lines (33 loc) · 1.11 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
from keras.preprocessing import image
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
import pandas as pd
import os
import cv2
new_model = tf.keras.models.load_model('my_model.h5')
new_model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
# new_model.summary()
dirs = os.listdir('data/data_private')
file = open("solve.csv", "a")
for files in dirs:
file_name = "data/data_private/" + files
img = cv2.imread(file_name)
img = cv2.resize(img,(64,64))
img = np.reshape(img,[1,64,64,3])
classes = new_model.predict_classes(img)
x = int(classes)
file.write(files)
file.write(",")
file.write(str(x))
file.write("\n")
# print (x)
file.close()
# test_datagen = ImageDataGenerator(rescale = 1./255)
# test_set = test_datagen.flow_from_directory('data/public_test',
# target_size = (64, 64),
# batch_size = 32,
# class_mode = 'categorical')
# out_csv = 'new-predictions.csv'
# predictions = new_model.predict(images)
# prediction = pd.DataFrame(predictions, columns=['Label']).to_csv('prediction.csv')