You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# You can set these variables from the command line.
5
+
SPHINXOPTS =
6
+
SPHINXBUILD = sphinx-build
7
+
PAPER =
8
+
BUILDDIR = _build
9
+
10
+
# User-friendly check for sphinx-build
11
+
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)
12
+
$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/)

2
+
3
+
Intermediate Python
4
+
===================
5
+
6
+
Python is an amazing language with a strong and friendly community of programmers. However, there is a lack of documentation on what to learn after getting the basics of Python down your throat. Through this book I aim to solve this problem. I will give you bits of information about some interesting topics which you can further explore.
7
+
8
+
The topics which are discussed in this book will open your mind to some nice corners of Python language. This book is an outcome of my desire to have something like this when I was beginning to learn Python.
9
+
10
+
If you are a beginner, intermediate or even an advanced programmer there is something for you in this book.
11
+
12
+
Please note that this book is not a tutorial and does not teach you Python. The topics are not explained in-depth and only the minimum required information is given.
13
+
14
+
I am sure you are as excited as I am. So, let’s start!
15
+
16
+
Note: This book is a work in progress. If you find anything which you can further improve (I know you will find a lot of stuff) then kindly submit a pull request. :)
17
+
18
+
Moreover, if you want to add more content to this book then kindly submit a pull request and I will be more than happy to merge it. :+1:
19
+
20
+
-------------------
21
+
22
+
**Note:** If you want to tip me for my work then you can buy the donation version of this book from [Gumroad](https://gum.co/intermediate_python). Apart from that, if this book somehow helps you then kindly share your experience with [me](mailto:yasoob.khld@gmail.com). I would really appreciate it.
23
+
24
+
-------------------
25
+
26
+
Table of Contents:
27
+
------------------
28
+
1) Programmer tools
29
+
-[Virtual Environment](virtual_environment.rst)
30
+
-[Debugging](debugging.rst)
31
+
-[Object introspection](object_introspection.rst)
32
+
2) Syntax
33
+
-[Exceptions](exceptions.rst)
34
+
-[For - Else](for_-_else.rst)
35
+
-[Ternary Operators](ternary_operators.rst)
36
+
-[Global & Return](global_&_return.rst)
37
+
-[Open function](open_function.rst)
38
+
-[\*args and \*\*kwargs](args_and_kwargs.rst)
39
+
-[Context managers](context_managers.rst)
40
+
3) Functional programming
41
+
-[Enumerate](enumerate.rst)
42
+
-[Lambdas](lambdas.rst)
43
+
-[``set`` Data Structure](set_-_data_structure.rst)
He wrote the chapter on Open function. Thanks Philipp! :+1:
73
+
74
+
Translation:
75
+
------------
76
+
If you want to translate this book in any other language then kindly let [me know](mailto:yasoob.khld@gmail.com). I would love your contribution. The currently translated versions are listed below:
En Python cualquier clase tiene atributos de instancia. Por defecto se usa un diccionario para almacenar los atributos de un determinado objeto, y esto es algo muy útil que permite por ejemplo crear nuevos atributos en tiempo de ejecución.
5
+
6
+
Sin embargo, para clases pequeñas con atributos conocidos, puede llegar a resultar un cuello de botella. El uso del diccionario ``dict`` desperdicia un montón de memoria RAM y Python no puede asignar una cantidad de memoria estática para almacenar los atributos. Por lo tanto, se come un montón de RAM si creas muchos objetos (del orden de miles o millones). Por suerte hay una forma de solucionar esto, haciendo uso de ``__slots__``, que permite decirle a Python que no use un diccionario y que solo asigne memoria para una cantidad fija de atributos. Aquí mostramos un ejemplo del uso de ``__slots__``:
7
+
8
+
**Sin usar** ``__slots__``:
9
+
10
+
.. code:: python
11
+
12
+
classMiClase(object):
13
+
def__init__(self, nombre, identificador):
14
+
self.nombre = nombre
15
+
self.identificador = identificador
16
+
self.iniciar()
17
+
# ...
18
+
19
+
**Usando** ``__slots__``:
20
+
21
+
.. code:: python
22
+
23
+
classMiClase(object):
24
+
__slots__= ['nombre', 'identificador']
25
+
def__init__(self, nombre, identificador):
26
+
self.nombre = nombre
27
+
self.identificador = identificador
28
+
self.iniciar()
29
+
# ...
30
+
31
+
El segundo código reducirá el uso de RAM. En alguna ocasiones se han reportado reducciones de hasta un 40 o 50% usando esta técnica.
32
+
33
+
Como nota adicional, tal vez quieras echar un vistazo a PyPy, ya que hace este tipo de optimizaciones por defecto.
34
+
35
+
En el siguiente ejemplo puedes ver el uso exacto de memoria con y sin ``__slots__``hecho en IPython gracias a https://github.com/ianozsvald/ipython_memory_usage
36
+
37
+
.. code:: python
38
+
39
+
Python 3.4.3 (default, Jun 6 2015, 13:32:34)
40
+
Type "copyright", "credits" or "license" for more information.
41
+
42
+
IPython 4.0.0 -- An enhanced Interactive Python.
43
+
? -> Introduction and overview of IPython's features.
44
+
%quickref -> Quick reference.
45
+
help -> Python's own help system.
46
+
object? -> Details about 'object', use 'object??' for extra details.
47
+
48
+
In [1]: import ipython_memory_usage.ipython_memory_usage as imu
49
+
50
+
In [2]: imu.start_watching_memory()
51
+
In [2] used 0.0000 MiB RAM in 5.31s, peaked 0.00 MiB above current, total RAM usage 15.57 MiB
52
+
53
+
In [3]: %cat slots.py
54
+
class MyClass(object):
55
+
__slots__ = ['name', 'identifier']
56
+
def __init__(self, name, identifier):
57
+
self.name = name
58
+
self.identifier = identifier
59
+
60
+
num = 1024*256
61
+
x = [MyClass(1,1) for i in range(num)]
62
+
In [3] used 0.2305 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 15.80 MiB
63
+
64
+
In [4]: from slots import *
65
+
In [4] used 9.3008 MiB RAM in 0.72s, peaked 0.00 MiB above current, total RAM usage 25.10 MiB
66
+
67
+
In [5]: %cat noslots.py
68
+
class MyClass(object):
69
+
def __init__(self, name, identifier):
70
+
self.name = name
71
+
self.identifier = identifier
72
+
73
+
num = 1024*256
74
+
x = [MyClass(1,1) for i in range(num)]
75
+
In [5] used 0.1758 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 25.28 MiB
76
+
77
+
In [6]: from noslots import *
78
+
In [6] used 22.6680 MiB RAM in 0.80s, peaked 0.00 MiB above current, total RAM usage 47.95 MiB
79
+
80
+
Se puede ver una clara reducción en el uso de RAM 9.3008 MiB vs 22.6680 MiB.
0 commit comments