-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun.sh
executable file
·37 lines (31 loc) · 1.33 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/bin/bash
stage=0
xvector_dir=/PATH/TO/XVECS #path to extracted xvectors
KALDI_PATH=/PATH/TO/KALDI_ROOT # path to kaldi root
folds_path=/PATH/TO/FOLDS_DATA # path to where the train/test split folds will be stored
cfg_path=/PATH/TO/CFG # path to main cfg, $folds_path is data_path in the cfg
num_folds=5 #default num folds is 5
if [ $stage -le 0 ]; then
# makes k-fold dataset (default: 5 folds)
python -m scripts.make_kfold_callhome $xvector_dir $KALDI_PATH/egs/callhome_diarization/v2/data/callhome/fullref.rttm $folds_path $num_folds
cp $KALDI_PATH/egs/callhome_diarization/v2/data/callhome/fullref.rttm $folds_path
fi
if [ $stage -le 1 ]; then
# train on each fold of data sequentially
for i in `seq 0 $(( $num_folds - 1 ))`; do
python train.py --cfg $cfg_path --fold $i || exit 1;
done
fi
if [ $stage -le 2 ]; then
# make predictions using the final model of each train fold
python predict.py --cfg $cfg_path
fi
if [ $stage -le 3 ]; then
# Clustering
# Finds best train set cluster parameter and then clusters tests sets using this value
# combines all and evaluates for all test portions combined
if [ ! -f "md-eval.pl" ]; then
wget https://raw.githubusercontent.com/foundintranslation/Kaldi/master/tools/sctk-2.4.0/src/md-eval/md-eval.pl
fi
python cluster.py --cfg $cfg_path
fi