-
For the next series of tasks about lists use the interpreter:
a. Create a list of 5 of your favorite things.
b. Use theprint()
function to print your list.
c. Use theprint()
function to print out the middle element.
d. Now replace the middle element with a different item, your favorite song, or song bird.
e. Use the same print statement from b. to print your new list. Check out the differences.
f. Add a new element to the end. Read about append().
g. Add a new element to the beginning. Read about insert().
h. Add a new element somewhere other than the beginning or the end.
i. Remove an element from the end. Read about pop().
j. Remove an element from the beginning.
k. Remove an element from somewhere other than the beginning or the end.
l. Usejoin
to create a string. Join the elements on ', ' -
Write a script that splits a string into a list. In your script:
- Save the string
sapiens, erectus, neanderthalensis
as a variable namedtaxa
. - Print
taxa
. - Print
taxa[1]
, what do you get? - Print
type(taxa)
. What is it's type? - Split
taxa
into individual words and print the result of the split. (Think about the ', '.) - Store the result of
split
in a new variable namedspecies
. - Print
species
. - Print the
species[1]
, What do you get? - Print
type(species)
. What is it's type? - Sort the list alphabetically and print (hint: lookup the function
sorted()
). - Sort the list by length of each string and print. (The shortest string should be first). Check out documentation of the key argument.
- Save the string
-
Using the Python interpreter, interrogate the difference between these two ways to copy a list. Careful! One of these is NOT what you might expect.
- Method 1
- Create a list. For example:
my_list = ['a', 'bb', 'ccc']
- Make a copy using the
=
assignment operator:list_copy = my_list
- Print the original list
print(my_list)
- Alter the
list_copy
by adding a new element usingappend()
- Print the original list again
print(my_list)
- Create a list. For example:
- Method 2
- Create a list. For example:
my_list2 = ['a', 'bb', 'ccc']
- Make a copy with the copy() method
list_copy2 = my_list2.copy()
- Print the original list
print(my_list2)
- Alter the
list_copy2
by adding a new element usingappend()
- Print the original list again
print(my_list2)
- Create a list. For example:
- Method 1
-
Write a script that uses a
while
loop to print out the numbers 1 to 100. -
Write a script that uses a
while
loop to calculate the factorial of 1000. -
Iterate through each element of this list using a
for
loop: [101,2,15,22,95,33,2,27,72,15,52]- Print out only the values that are even (hint: use the modulus operator).
-
Sort the elements of the above list, then iterate through each element using a
for
loop and:- Print each element.
- Calculate two cumulative sums, one of all the even values and one of all the odd values.
- Print only the final two sums. The output from your script should be:
Sum of even numbers: 150 Sum of odds: 286
-
Write a script that uses
range()
in afor
loop to print out every number between 0 and 99- Modify your loop to print out every number between 1 and 100.
-
Create a new script that uses list comprehension to do the same thing as problem 8. (Use
range()
to print out every number between 1 and 100.) -
Write a new script that takes the start and end values from the command line. If you call your script like this
count.py 3 10
it will print the numbers from 3 to 10.- Modify your script so that it will only print the number if it is odd.
-
Write a new script to create a list with the following data
['ATGCCCGGCCCGGC','GCGTGCTAGCAATACGATAAACCGG', 'ATATATATCGAT','ATGGGCCC']
. Use afor
loop to iterate through each element of this list and:
- Print out each element.
- Print out the length and the sequence, separated by a tab. The output should look like:
14 ATGCCCGGCCCGGC
25 GCGTGCTAGCAATACGATAAACCGG
12 ATATATATCGAT
8 ATGGGCCC
-
Use list comprehension to generate a list of tuples. The tuples should contain sequences and lengths from the previous problem. Print out the length and the sequence (i.e., "4\tATGC\n"). A list of tuples looks like this [(4,'ATGC'),(2,'GC')].
-
Modify the script from #11 so that you also print out the number (postion in the list) of each sequence (i.e., "1\t4\tACGT\n")
-
Have you been commiting you work?
Fun challenge problems! These are real scripts you might use in real life. You have already learned all you need to know to do each. If you don't have enough time in this session to complete, come back and try later.
-
Create a shuffled sequence (Fisher-Yates shuffle)
- Use a
for
loop to perform the following procedure N times (N = length of seq) - Select a random position A with
randrange()
- Select a random position B with
randrange()
- Exchange the letters at list indices A and B
- Print the final shuffled sequence
- Remember to test your code with test data.
- Use a
-
Calculate sequence identity: Start with 2 very similar DNA sequences. Use your favorites or use Python_04.fasta
- Align with ClustalW, TCoffee, or some other web alignment application.
- Output should be in FASTA format.
- Store (copy and paste) each aligned sequence, including dashes, as two separate string variables.
- Get rid of newlines (if any). Newline characters are not part of sequence!
- Use a
for
loop withrange()
to compare each index for nucleotide differences. - Report percent identity of the two sequences.
-
A new Restriction Fragments script:
- Find EcoRI in this DNA sequence
GATGGGATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAGCCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTCCACGACGGTGACACGCTTCCCTGGATTGGCAGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGCAGTCAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGAAAACAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAACAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATTCGCCAGAGGCTGCTCCCCCCGTGGCCCCTGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCTGTGACTTGCACGTACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAGCCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTCCACGACGGTGACACGCTTCCCTGGATTGGCAGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGCAGTCAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGAAAACAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAACAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATTCGCCAGAGGCTGCTCCCCCCGTGGCCCCTGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCTGTGACTTGCACGTACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGAC
- replace the EcoRI site 'GAATTC' with this 'G^AATTC'
- split the new formatted sequence on the cut sites, store the resulting fragments in a list
- iterate over each fragment and report
- the start position in the original sequence
- the end postion in the orginal sequence
- the length of each fragemnt
- sort the fragments by length and print out as they would appear on a agrose gel. (big to little)