-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathhtrAugmentor.py
executable file
·110 lines (84 loc) · 3.92 KB
/
htrAugmentor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cv2
import numpy as np
import random
def augmentor(img):
TH,TW=img.shape
param_gamma_low=.3
param_gamma_high=2
param_mean_gaussian_noise=0
param_sigma_gaussian_noise=100**0.5
param_kanungo_alpha=2 # params controlling how much foreground and background pixels flip state
param_kanungo_beta=2
param_kanungo_alpha0=1
param_kanungo_beta0=1
param_kanungo_mu=0
param_kanungo_k=2
param_min_shear=-.5 # more shear to the left than to the right
param_max_shear=.25
param_rotation=3 # plus minus angles for rotation
param_scale=.2 # one plus minus parameter as scaling factor
param_movement_BB=6 # translation for cropping errors in pixels
# add gaussian noise
gauss = np.random.normal(param_mean_gaussian_noise,param_sigma_gaussian_noise,(TH,TW))
gauss = gauss.reshape(TH,TW)
gaussiannoise = np.uint8(np.clip(np.float32(img) + gauss,0,255))
# randomly erode, dilate or nothing
# we could move it also after binarization
kernel=np.ones((3,3),np.uint8)
a=random.choice([0,1])
# if a==1:
# gaussiannoise=cv2.erode(gaussiannoise,kernel,iterations=1)
# add random gamma correction
gamma=np.random.uniform(param_gamma_low,param_gamma_high)
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
gammacorrected = cv2.LUT(np.uint8(gaussiannoise), table)
# binarize image with Otsu
otsu_th,binarized = cv2.threshold(gammacorrected,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# Kanungo noise
dist = cv2.distanceTransform(1-binarized, cv2.DIST_L1, 3)
dist2 = cv2.distanceTransform(binarized, cv2.DIST_L1, 3)
dist = dist.astype('float64')
dist2 = dist2.astype('float64')
P=(param_kanungo_alpha0*np.exp(-param_kanungo_alpha * dist**2)) + param_kanungo_mu
P2=(param_kanungo_beta0*np.exp(-param_kanungo_beta * dist2**2)) + param_kanungo_mu
distorted=binarized.copy()
distorted[((P>np.random.rand(P.shape[0],P.shape[1])) & (binarized==0))]=1
distorted[((P2>np.random.rand(P.shape[0],P.shape[1])) & (binarized==1))]=0
closing = cv2.morphologyEx(distorted, cv2.MORPH_CLOSE, np.ones((param_kanungo_k,param_kanungo_k),dtype=np.uint8))
# apply binary image as mask and put it on a larger canvas
pseudo_binarized = closing * (255-gammacorrected)
canvas=np.zeros((3*TH,3*TW),dtype=np.uint8)
canvas[TH:2*TH,TW:2*TW]=pseudo_binarized
points=[]
count = 0
while(len(points)<1):
count += 1
if count > 50:
break
# random shear
shear_angle=np.random.uniform(param_min_shear,param_max_shear)
M=np.float32([[1,shear_angle,0],[0,1,0]])
sheared = cv2.warpAffine(canvas,M,(3*TW,3*TH),flags=cv2.WARP_INVERSE_MAP|cv2.INTER_CUBIC)
# random rotation
M = cv2.getRotationMatrix2D((3*TW/2,3*TH/2),np.random.uniform(-param_rotation,param_rotation),1)
rotated = cv2.warpAffine(sheared,M,(3*TW,3*TH),flags=cv2.WARP_INVERSE_MAP|cv2.INTER_CUBIC)
# random scaling
scaling_factor=np.random.uniform(1-param_scale,1+param_scale)
scaled = cv2.resize(rotated,None,fx=scaling_factor,fy=scaling_factor,interpolation=cv2.INTER_CUBIC)
# detect cropping parameters
points = np.argwhere(scaled!=0)
points = np.fliplr(points)
if len(points) < 1:
return pseudo_binarized
r = cv2.boundingRect(np.array([points]))
#random cropping
deltax=random.randint(-param_movement_BB,param_movement_BB)
deltay=random.randint(-param_movement_BB,param_movement_BB)
x1=min(scaled.shape[0]-1,max(0,r[1]+deltax))
y1=min(scaled.shape[1]-1,max(0,r[0]+deltay))
x2=min(scaled.shape[0],x1+r[3])
y2=min(scaled.shape[1],y1+r[2])
final_image=np.uint8(scaled[x1:x2,y1:y2])
return final_image