-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInitialization.py
87 lines (77 loc) · 2.46 KB
/
Initialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy
def initialization_KNN(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
if(j==dim[0]-1):
pos[i,j]=numpy.rint(numpy.random.uniform(lb[j],ub[j],1))
else:
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_NN(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
if(j==dim[0]-1):
pos[i,j]=numpy.rint(numpy.random.uniform(lb[j],ub[j],1))
else:
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_NB(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_CSVML(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_CSVMP(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_CSVMR(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_NSVML(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_NSVMP(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_NSVMR(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos
def initialization_def(lb,ub,P):
dim=lb.shape
pos=numpy.zeros([P,dim[0]]);
for i in range(0,P):
for j in range(0,dim[0]):
pos[i,j]=numpy.random.uniform(lb[j],ub[j],1)
return pos