-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDistinctPowers.java
37 lines (30 loc) · 1.02 KB
/
DistinctPowers.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package problem29;
/*
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125
If they are then placed in numerical order, with any repeats removed, we get the
following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by a^b for
2 <= a <= 100 and 2 <= b <= 100?
*/
import java.math.BigInteger;
import java.util.HashSet;
import java.util.Set;
public class DistinctPowers {
public static void main(String[] args) {
System.out.println(sumPowers(100, 100));
}
private static int sumPowers(int limitA, int limitB) {
Set<BigInteger> terms = new HashSet<BigInteger>();
for(int i = 2; i <= limitA; i++) {
for(int j = 2; j <= limitB; j++) {
terms.add(BigInteger.valueOf(i).pow(j));
}
}
return terms.size();
}
}