-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcnn_3c.py
232 lines (183 loc) · 10.9 KB
/
cnn_3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import tensorflow as tf
from base_nn import BaseNN
import os
def conv2d(name, l_input, w, b):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1],
padding='SAME'),b), name=name)
def max_pool(name, l_input, k):
return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME', name=name)
def norm(name, l_input, lsize=4):
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
def init_weights(shape, name):
return tf.Variable(tf.random_normal(shape, stddev=0.01), name=name)
def init_bias(shape, name):
return tf.Variable(tf.random_normal(shape), name=name)
class ConvNet(BaseNN):
def construct(self):
"""
Construction phase. It defines the operations of the network
"""
# Placeholders for input, output and dropout
input_x = tf.placeholder(tf.float32, [None, self.parameters['width'], self.parameters['height']],
name="input_x")
input_y = tf.placeholder(tf.float32, [None, self.parameters['num_classes']], name="input_y")
# Stores the probability of keeping a neuron in the dropout layer
dropout_hidden_keep_prob = tf.placeholder(tf.float32, name="dropout_hidden_keep_prob")
img_expanded = tf.reshape(input_x, shape=[-1, self.parameters['width'], self.parameters['height'], 1])
print "Input IMG: {}".format(input_x)
print "IMG expanded: {}".format(img_expanded)
with tf.name_scope("img-conv-maxpool-%s" % self.parameters['filter_sizes'][0]):
filter_shape = [self.parameters['filter_sizes'][0],
self.parameters['filter_sizes'][0],
1,
self.parameters['num_filters'][0]]
W_1_img = tf.get_variable("W1_img", shape=filter_shape,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_1_img = init_bias([self.parameters['num_filters'][0]], "b")
print "IMG W l1: {}".format(W_1_img)
print "IMG b l1: {}".format(b_1_img)
# Convolution Layer
conv1_img = conv2d('conv1', img_expanded, W_1_img, b_1_img)
print "IMG Conv 1: {}".format(conv1_img)
# Max Pooling (down-sampling)
pool1_img = max_pool('pool1', conv1_img, k=2)
print "IMG Pooling 1: {}".format(pool1_img)
# Apply Normalization
norm1_img = norm('norm1', pool1_img, lsize=4)
print "IMG Norm 1: {}".format(norm1_img)
with tf.name_scope("img-conv-maxpool-%s" % self.parameters['filter_sizes'][1]):
filter_shape = [self.parameters['filter_sizes'][1],
self.parameters['filter_sizes'][1],
self.parameters['num_filters'][0],
self.parameters['num_filters'][1]]
W_2_img = tf.get_variable("W2_img", shape=filter_shape,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_2_img = init_bias([self.parameters['num_filters'][1]], "b")
print "IMG W l2: {}".format(W_2_img)
print "IMG b l2: {}".format(b_2_img)
# Apply dropout
# drop1_img = tf.nn.dropout(norm1_img, dropout_hidden_keep_prob)
# Convolution Layer
conv2_img = conv2d('conv2', norm1_img, W_2_img, b_2_img)
print "IMG Conv 2: {}".format(conv2_img)
# Max Pooling (down-sampling)
pool2_img = max_pool('pool2', conv2_img, k=2)
print "IMG Pooling 2: {}".format(pool2_img)
# Apply Normalization
norm2_img = norm('norm2', pool2_img, lsize=4)
print "IMG Norm 2: {}".format(norm2_img)
with tf.name_scope("img-conv-maxpool-%s" % self.parameters['filter_sizes'][2]):
filter_shape = [self.parameters['filter_sizes'][2],
self.parameters['filter_sizes'][2],
self.parameters['num_filters'][1],
self.parameters['num_filters'][2]]
W_3_img = tf.get_variable("W3_img", shape=filter_shape,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_3_img = init_bias([self.parameters['num_filters'][2]], "b")
print "IMG W l2: {}".format(W_3_img)
print "IMG b l2: {}".format(b_3_img)
# Apply dropout
# drop2_img = tf.nn.dropout(norm2_img, dropout_hidden_keep_prob)
# Convolution Layer
conv3_img = conv2d('conv3', norm2_img, W_3_img, b_3_img)
print "IMG Conv 3: {}".format(conv3_img)
# Max Pooling (down-sampling)
pool3_img = max_pool('pool3', conv3_img, k=2)
print "IMG Pooling 3: {}".format(pool3_img)
# Apply Normalization
norm3_img = norm('norm3', pool3_img, lsize=4)
print "IMG Norm 3: {}".format(norm3_img)
with tf.name_scope("img-fully-connected-layer"):
W_4_img = tf.get_variable("W4_img",
shape=[int(norm3_img.shape[1]) * int(norm3_img.shape[2]) * int(norm3_img.shape[3]),
self.parameters["hidden_neurons"]],
initializer=tf.contrib.layers.xavier_initializer())
b_4_img = init_bias([self.parameters["hidden_neurons"]], "b")
print "IMG W fully-connected layer: {}".format(W_4_img)
print "IMG b fully-connected layer: {}".format(b_4_img)
drop3_img = tf.nn.dropout(norm3_img, dropout_hidden_keep_prob)
dense1_img = tf.reshape(drop3_img, [-1, W_4_img.get_shape().as_list()[0]])
# Relu activation
dense1_img = tf.nn.relu(tf.add(tf.matmul(dense1_img, W_4_img), b_4_img))
print "IMG Fully-connected ReLU: {}".format(dense1_img)
with tf.name_scope("output"):
W_output = init_weights([self.parameters["hidden_neurons"], self.parameters["num_classes"]], "W")
b_output = init_bias([self.parameters["num_classes"]], "b")
print "W output layer: {}".format(W_output)
print "b output layer: {}".format(b_output)
# Apply dropout
drop_output = tf.nn.dropout(dense1_img, dropout_hidden_keep_prob)
# Output, class prediction
scores = tf.nn.xw_plus_b(drop_output, W_output, b_output, name="scores")
print "Scores: {}".format(scores)
predictions = tf.argmax(scores, 1, name="predictions")
softmax_probabilities = tf.nn.softmax(scores, name="probabilities")
# Loss and accuracy
# Measures the error that our network makes. Cross-entropy loss
# Calculate mean cross-entropy loss
with tf.name_scope("loss_and_accuracy"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=scores, labels=input_y)
loss = tf.reduce_mean(losses, name="loss")
correct_predictions = tf.equal(predictions, tf.argmax(input_y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
# Training procedure
with tf.name_scope("train"):
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(self.parameters['learning_rate'], name="Adam")
grads_and_vars = optimizer.compute_gradients(loss)
if self.parameters['gradient_clipping'] == True:
capped_gvs = [
(tf.clip_by_value(grad, self.parameters['min_gradient'], self.parameters['max_gradient']), var)
for
grad, var in
grads_and_vars]
train_op = optimizer.apply_gradients(capped_gvs, global_step=global_step,
name="train_op")
else:
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step,
name="train_op")
with tf.name_scope("summaries"):
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries, name="grad_summaries_merged")
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", loss)
acc_summary = tf.summary.scalar("accuracy", accuracy)
acc_summary = tf.summary.scalar("accuracy", accuracy)
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged],
name="train_summary_op")
dev_summary_op = tf.summary.merge([loss_summary, acc_summary],
name="dev_summary_op")
def predict(self, img_raw):
input_x = self.network_graph.get_operation_by_name("input_x").outputs[0]
dropout_hidden_keep_prob = self.network_graph.get_operation_by_name("dropout_hidden_keep_prob").outputs[0]
predictions = self.network_graph.get_operation_by_name("output/predictions").outputs[0]
probabilities = self.network_graph.get_operation_by_name("output/probabilities").outputs[0]
ypred, probs = self.network_session.run([predictions, probabilities], {input_x: img_raw,
dropout_hidden_keep_prob: 1.0})
return ypred[0], probs[0]
if __name__ == "__main__":
model = ConvNet(os.path.dirname(
os.path.abspath(__file__)) + "/parameters/parameters_cnn_3c_128x128.json")
model.init_directories("CNN_IMG_3C_128x128")
model.init_graph()
tfrecords_filepath = "/path/to/tfrecords/"
model.train([tfrecords_filepath + "training0.tfrecords",
tfrecords_filepath + "training1.tfrecords",
tfrecords_filepath + "training2.tfrecords",
tfrecords_filepath + "training3.tfrecords",
tfrecords_filepath + "training4.tfrecords",
tfrecords_filepath + "training5.tfrecords",
tfrecords_filepath + "training6.tfrecords",
tfrecords_filepath + "training7.tfrecords",
tfrecords_filepath + "training8.tfrecords"
],
[
tfrecords_filepath + "training9.tfrecords"])