forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.mk
190 lines (148 loc) · 4.87 KB
/
config.mk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#-------------------------------------------------------------------------------
# Template configuration for compiling mxnet
#
# If you want to change the configuration, please use the following
# steps. Assume you are on the root directory of mxnet. First copy the this
# file so that any local changes will be ignored by git
#
# $ cp make/config.mk .
#
# Next modify the according entries, and then compile by
#
# $ make
#
# or build in parallel with 8 threads
#
# $ make -j8
#-------------------------------------------------------------------------------
#---------------------
# choice of compiler
#--------------------
export CC = gcc
export CXX = g++
export NVCC = nvcc
# whether compile with options for MXNet developer
DEV = 0
# whether compile with debug
DEBUG = 0
# whether compile with profiler
USE_PROFILER =
# whether to turn on signal handler (e.g. segfault logger)
USE_SIGNAL_HANDLER =
# the additional link flags you want to add
ADD_LDFLAGS =
# the additional compile flags you want to add
ADD_CFLAGS =
#---------------------------------------------
# matrix computation libraries for CPU/GPU
#---------------------------------------------
# whether use CUDA during compile
USE_CUDA = 0
# add the path to CUDA library to link and compile flag
# if you have already add them to environment variable, leave it as NONE
# USE_CUDA_PATH = /usr/local/cuda
USE_CUDA_PATH = NONE
# whether use CuDNN R3 library
USE_CUDNN = 0
# whether use opencv during compilation
# you can disable it, however, you will not able to use
# imbin iterator
USE_OPENCV = 1
#whether use libjpeg-turbo for image decode without OpenCV wrapper
USE_LIBJPEG_TURBO = 0
#add the path to libjpeg-turbo library
USE_LIBJPEG_TURBO_PATH = NONE
# use openmp for parallelization
USE_OPENMP = 1
# MKL ML Library for Intel CPU/Xeon Phi
# Please refer to MKL_README.md for details
# MKL ML Library folder, need to be root for /usr/local
# Change to User Home directory for standard user
# For USE_BLAS!=mkl only
MKLML_ROOT=/usr/local
# whether use MKL2017 library
USE_MKL2017 = 0
# whether use MKL2017 experimental feature for high performance
# Prerequisite USE_MKL2017=1
USE_MKL2017_EXPERIMENTAL = 0
# whether use NNPACK library
USE_NNPACK = 0
# choose the version of blas you want to use
# can be: mkl, blas, atlas, openblas
# in default use atlas for linux while apple for osx
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S), Darwin)
USE_BLAS = apple
else
USE_BLAS = atlas
endif
# whether use lapack during compilation
# only effective when compiled with blas versions openblas/apple/atlas/mkl
USE_LAPACK = 1
# path to lapack library in case of a non-standard installation
USE_LAPACK_PATH =
# add path to intel library, you may need it for MKL, if you did not add the path
# to environment variable
USE_INTEL_PATH = NONE
# If use MKL only for BLAS, choose static link automatically to allow python wrapper
ifeq ($(USE_MKL2017), 0)
ifeq ($(USE_BLAS), mkl)
USE_STATIC_MKL = 1
endif
else
USE_STATIC_MKL = NONE
endif
#----------------------------
# Settings for power and arm arch
#----------------------------
ARCH := $(shell uname -a)
ifneq (,$(filter $(ARCH), armv6l armv7l powerpc64le ppc64le aarch64))
USE_SSE=0
else
USE_SSE=1
endif
#----------------------------
# distributed computing
#----------------------------
# whether or not to enable multi-machine supporting
USE_DIST_KVSTORE = 0
# whether or not allow to read and write HDFS directly. If yes, then hadoop is
# required
USE_HDFS = 0
# path to libjvm.so. required if USE_HDFS=1
LIBJVM=$(JAVA_HOME)/jre/lib/amd64/server
# whether or not allow to read and write AWS S3 directly. If yes, then
# libcurl4-openssl-dev is required, it can be installed on Ubuntu by
# sudo apt-get install -y libcurl4-openssl-dev
USE_S3 = 0
# Use gperftools if found
USE_GPERFTOOLS = 1
# Use JEMalloc if found, and not using gperftools
USE_JEMALLOC = 1
#----------------------------
# additional operators
#----------------------------
# path to folders containing projects specific operators that you don't want to put in src/operators
EXTRA_OPERATORS =
#----------------------------
# other features
#----------------------------
# Create C++ interface package
USE_CPP_PACKAGE = 0
#----------------------------
# plugins
#----------------------------
# whether to use caffe integration. This requires installing caffe.
# You also need to add CAFFE_PATH/build/lib to your LD_LIBRARY_PATH
# CAFFE_PATH = $(HOME)/caffe
# MXNET_PLUGINS += plugin/caffe/caffe.mk
# whether to use torch integration. This requires installing torch.
# You also need to add TORCH_PATH/install/lib to your LD_LIBRARY_PATH
# TORCH_PATH = $(HOME)/torch
# MXNET_PLUGINS += plugin/torch/torch.mk
# WARPCTC_PATH = $(HOME)/warp-ctc
# MXNET_PLUGINS += plugin/warpctc/warpctc.mk
# whether to use sframe integration. This requires build sframe
# git@github.com:dato-code/SFrame.git
# SFRAME_PATH = $(HOME)/SFrame
# MXNET_PLUGINS += plugin/sframe/plugin.mk