-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
41 lines (36 loc) · 1.93 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
from typing import List
import gpt_2_simple as gpt2
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.sess = gpt2.start_tf_sess()
self.run_name = "gpt2-wow"
gpt2.load_gpt2(self.sess, run_name=self.run_name)
def predict(self,
quest_title: str = Input(description="Title of the quest for which the model should generate dialogue", default="The Lost Kitten"),
quest_objective: str = Input(description="Objective of the quest for which the model should generate dialogue", default="Search the bustling streets of Dalaran to find a mischievous Fel Kitten that escaped from a warlock's tower."),
nr_of_samples: int = Input(description="Number of samples to generate", default=1, ge=0),
batch_size: int = Input(description="Samples per batch. Must divide the total amount of samples.", default=1, ge=1),
temperature: float = Input(description="Temperature for generation", default=0.9, ge=0, le=1)
) -> List[str]:
"""Run a single prediction on the model"""
if nr_of_samples % batch_size != 0:
raise ValueError("nr_of_samples must be a multiple of batch_size")
# pre-processing
prompt = f"<|startoftext|>{quest_title.strip()}<|obj|>{quest_objective.strip()}<|text|>"
# generation
completions = gpt2.generate(self.sess,
run_name=self.run_name,
temperature=temperature,
prefix=prompt,
truncate="<|endoftext|>",
nsamples=nr_of_samples,
batch_size=batch_size,
include_prefix=False,
return_as_list=True
)
# ... post-processing ...
return completions