We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
content/选修-Advanced Retrieval for AI with Chroma/6. 嵌入适配器 Embedding Adaptors.ipynb 看完有一个最大的疑问是如果我得到了一个嵌入适配器模型,怎么把它用于我的RAG应用呢?这一部分也没有在该章节涉及
content/选修-Advanced Retrieval for AI with Chroma/6. 嵌入适配器 Embedding Adaptors.ipynb
我尝试了下面的代码,但是感觉结果比不使用嵌入适配器模型还要差,这是为什么?
query_embeddings = embedding_function(generated_queries) # best_matrix 就是已经训练好后的嵌入适配器模型矩阵 adapted_query_embeddings = np.matmul(best_matrix, np.array(query_embeddings).T).T results = chroma_collection.query(query_embeddings=adapted_query_embeddings, n_results=10) from tool import get_completion_from_messages retrieved_documents = results['documents'] information = "\n\n".join(["\n".join(doc) for doc in retrieved_documents]) def rag(query, information): # 中文prompt messages = [ { "role": "system", "content": "你是一个有用的专家级财务研究助手。你的用户正在询问年度报告中包含的信息相关的问题。" "你将看到用户的问题和年度报告中的相关信息。请仅使用这些信息回答用户的问题。" }, {"role": "user", "content": f"问题:{query}。\n信息:{information}"} ] response = get_completion_from_messages(messages) return response print(rag("报告中是否提到失业率的变化?", information))
The text was updated successfully, but these errors were encountered:
No branches or pull requests
content/选修-Advanced Retrieval for AI with Chroma/6. 嵌入适配器 Embedding Adaptors.ipynb
看完有一个最大的疑问是如果我得到了一个嵌入适配器模型,怎么把它用于我的RAG应用呢?这一部分也没有在该章节涉及我尝试了下面的代码,但是感觉结果比不使用嵌入适配器模型还要差,这是为什么?
The text was updated successfully, but these errors were encountered: