-
Notifications
You must be signed in to change notification settings - Fork 0
/
feedforward.py
98 lines (77 loc) · 2.47 KB
/
feedforward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# hyper parameters
input_size = 784 # 28x28 flattened tensor
hidden_size = 100
num_classes = 10
num_epochs = 2
batch_size = 100
learning_rate = 0.001
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(
root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(
root='./data',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
examples = iter(train_loader)
samples, labels = examples.next()
print(samples.shape, labels.shape)
for i in range(6):
plt.subplot(2, 3, i+1)
plt.imshow(samples[i][0], cmap='gray')
#plt.show()
class DavNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(DavNet, self).__init__()
self.l1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.l2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
return out
model = DavNet(input_size, hidden_size, num_classes)
# loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# training loop
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
# forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'epoch {epoch+1} / {num_epochs}, step {i+1}/{n_total_steps}, loss = {loss.item():.4f}')
# test & evaluation
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# value, index
_, predictions = torch.max(outputs, 1)
n_samples += labels.shape[0]
n_correct += (predictions == labels).sum().item()
acc = 100.0 * n_correct / n_samples
print('accuracy = ', acc)