-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_contrastive.py
189 lines (144 loc) · 5.19 KB
/
train_contrastive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import datetime
import json
import math
import os
import time
import torch.nn as nn
import torch.nn.functional as F
from src.args import parse_args
from src.dataset import build_loader
from src.logger import create_logger
from src.lr_scheduler import build_scheduler
from src.moco import build_moco
from src.optimizer import build_optimizer
from src.transform import build_transform_contrastive
from src.utils import (
accuracy,
Average_Meter,
count_parameters,
get_device,
load_checkpoint,
save_checkpoint,
set_seed,
)
def main():
args = parse_args()
set_seed(args.seed)
if args.resume:
assert os.path.isfile(args.resume)
os.makedirs(args.dir_out, exist_ok=True)
logger = create_logger(args.dir_out)
device = get_device(args=args, logger=logger)
path_args = os.path.join(args.dir_out, 'args.yaml')
with open(path_args, 'w') as file_args:
json.dump(args.__dict__, file_args, indent=2)
logger.info(f'Full args saved to {path_args}')
logger.info(args.__dict__)
dataloader = build_loader(args)
transform = build_transform_contrastive(args)
model = build_moco(args).to(device)
loss_fn = F.cross_entropy
n_parameters = count_parameters(model)
logger.info(f'Number of params: {n_parameters}')
optimizer = build_optimizer(args=args, model=model)
lr_scheduler = build_scheduler(args=args, optimizer=optimizer)
global_step = 0
if args.resume:
global_step = load_checkpoint(
args=args,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
logger=logger,
)
n_steps_per_epoch = len(dataloader)
n_epochs = math.ceil(
(args.steps - global_step) / n_steps_per_epoch)
logger.info(
f'Training for {n_epochs} epoch(s) with {n_steps_per_epoch} steps per epoch.')
start_time = time.time()
for epoch in range(1, n_epochs + 1):
logger.info('#' * 60)
logger.info(
f'Step {global_step}: starting epoch [{epoch}/{n_epochs}]...')
global_step = train_one_epoch(
args=args,
model=model,
loss_fn=loss_fn,
dataloader=dataloader,
transform=transform,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
logger=logger,
device=device,
global_step=global_step,
global_start_time=start_time,
)
if global_step < 0:
break
total_time = time.time() - start_time
total_time = str(datetime.timedelta(seconds=int(total_time)))
logger.info('#' * 60)
logger.info(f'Total training time: {total_time}')
def train_one_epoch(
args, model, loss_fn, dataloader, transform, optimizer, lr_scheduler,
logger, device, global_step, global_start_time,
):
model.train()
last_iter = False
acc1_meter, acc5_meter = Average_Meter(), Average_Meter()
loss_meter = Average_Meter()
start_time = time.time()
for local_step, (batch, file_idxs) in enumerate(dataloader, 1):
for param in model.parameters():
param.grad = None
batch = batch.to(device)
file_idxs = file_idxs.to(device)
q, k = transform(batch)
outputs, labels = model(
q=q, k=k, file_idxs=file_idxs, step=global_step)
loss = loss_fn(outputs, labels)
loss.backward()
if args.clip_grad:
nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
optimizer.step()
lr_scheduler.step_update(global_step)
batch_size = labels.shape[0]
loss_meter.update_avg(val=loss.item(), n=batch_size)
acc1, acc5 = accuracy(
output=outputs.detach().float(), target=labels, topk=(1, 5))
acc1_meter.update_avg(val=acc1.item(), n=batch_size)
acc5_meter.update_avg(val=acc5.item(), n=batch_size)
if global_step >= args.steps - 1:
last_iter = True
if (global_step + 1) % args.steps_save == 0 or last_iter:
save_checkpoint(
args=args,
step=global_step,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
logger=logger,
)
if (global_step + 1) % args.steps_print == 0:
lr = optimizer.param_groups[0]['lr']
so_far = time.time() - global_start_time
avg_time = (time.time() - start_time) / local_step
eta = avg_time * (args.steps - global_step)
so_far = datetime.timedelta(seconds=int(so_far))
eta = datetime.timedelta(seconds=int(eta))
logger.info('#' * 60)
logger.info(f'Step [{global_step + 1}/{args.steps}]')
logger.info(f'Time -> So-far: {so_far}, ETA: {eta}')
logger.info(
f'Metrics -> ACC1: {acc1_meter.avg:.2f}, ACC5: {acc5_meter.avg:.2f}')
logger.info(f'Other -> Loss: {loss_meter.avg:.5f}, LR: {lr:.6f}')
acc1_meter.reset()
acc5_meter.reset()
loss_meter.reset()
if last_iter:
return -1
global_step += 1
return global_step
if __name__ == '__main__':
main()