-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlibllama.py
2328 lines (1788 loc) · 86.6 KB
/
libllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# libllama.py
# https://github.com/ddh0/easy-llama/
# MIT License -- Copyright (c) 2024 Dylan Halladay
"""This file provides a Python interface to LLAMA_API ("libllama"), which is
originally defined in `llama.cpp/include/llama.h`.
This file was last updated to match llama.cpp commit `08f10f69c38288e9e8bb1f933af63a3fc9013d40`.
---
Helpful references:
- `libllama` changelog:
[llama.cpp/issues/9289](https://github.com/ggerganov/llama.cpp/issues/9289)
- `llama.h` at master:
[llama.cpp/blob/master/include/llama.h](https://github.com/ggerganov/llama.cpp/blob/master/include/llama.h)"""
import sys
import ctypes
import faulthandler
import numpy as np
from enum import IntEnum
from typing import Optional, Iterable
from .utils import ptr, log, ez_decode
faulthandler.enable() # prints more helpful info if python crashes
class LlamaDeprecatedException(Exception):
"""Exception raised when calling functions marked with DEPRECATED in libllama"""
def DEPRECATED(new_func_name: Optional[str] = None):
"""Decorator for functions that are marked with DEPRECATED in libllama"""
def decorator(func):
def deprecator(*args, **kwargs):
if new_func_name is None:
raise LlamaDeprecatedException(
f"the function {func.__name__} is marked as deprecated. you cannot "
f"use it."
)
else:
raise LlamaDeprecatedException(
f"the function {func.__name__} is marked as deprecated. you cannot "
f"use it. use {new_func_name} instead."
)
return deprecator
return decorator
#
# Import shared library
#
#libllama = ctypes.CDLL('/home/dylan/Documents/AI/llama.cpp/build/bin/libllama.so')
libllama = ctypes.CDLL('/Users/dylan/Documents/AI/llama.cpp/build/bin/libllama.dylib')
#
# Type hints and other constants
#
NULL = None
NULLPTR = ctypes.c_void_p(NULL)
# maximum value for int32, it is used as the value for n_gpu_layers
# when all layers should be offloaded
MAX_OFFLOAD_LAYERS = 0x7FFFFFFF
# keep state for backend
_BACKEND_INIT = False
#
# Stuff from llama.cpp/ggml/include/ggml.h
#
GGML_EXIT_SUCCESS = 0
GGML_EXIT_ABORTED = 1
GGML_ROPE_TYPE_NEOX = 2
GGML_ROPE_TYPE_MROPE = 8
GGML_ROPE_TYPE_VISION = 24
GGUF_MAGIC = 0x46554747 # "GGUF"
GGUF_MAGIC_BYTES = b'GGUF'
GGUF_VERSION = 3
GGUF_DEFAULT_ALIGNMENT = 32
class GGMLType(IntEnum):
GGML_TYPE_F32 = 0
GGML_TYPE_F16 = 1
GGML_TYPE_Q4_0 = 2
GGML_TYPE_Q4_1 = 3
# GGML_TYPE_Q4_2 = 4 -- support has been removed
# GGML_TYPE_Q4_3 = 5 -- support has been removed
GGML_TYPE_Q5_0 = 6
GGML_TYPE_Q5_1 = 7
GGML_TYPE_Q8_0 = 8
GGML_TYPE_Q8_1 = 9
GGML_TYPE_Q2_K = 10
GGML_TYPE_Q3_K = 11
GGML_TYPE_Q4_K = 12
GGML_TYPE_Q5_K = 13
GGML_TYPE_Q6_K = 14
GGML_TYPE_Q8_K = 15
GGML_TYPE_IQ2_XXS = 16
GGML_TYPE_IQ2_XS = 17
GGML_TYPE_IQ3_XXS = 18
GGML_TYPE_IQ1_S = 19
GGML_TYPE_IQ4_NL = 20
GGML_TYPE_IQ3_S = 21
GGML_TYPE_IQ2_S = 22
GGML_TYPE_IQ4_XS = 23
GGML_TYPE_I8 = 24
GGML_TYPE_I16 = 25
GGML_TYPE_I32 = 26
GGML_TYPE_I64 = 27
GGML_TYPE_F64 = 28
GGML_TYPE_IQ1_M = 29
GGML_TYPE_BF16 = 30
# GGML_TYPE_Q4_0_4_4 = 31 -- support has been removed from gguf files
# GGML_TYPE_Q4_0_4_8 = 32
# GGML_TYPE_Q4_0_8_8 = 33
GGML_TYPE_TQ1_0 = 3,
GGML_TYPE_TQ2_0 = 35
# GGML_TYPE_IQ4_NL_4_4 = 36
# GGML_TYPE_IQ4_NL_4_8 = 37
# GGML_TYPE_IQ4_NL_8_8 = 38
GGML_TYPE_COUNT = 39
# these values are from llama.cpp/gguf-py/gguf/constants.py
class GGUFValueType(IntEnum):
UINT8 = 0
INT8 = 1
UINT16 = 2
INT16 = 3
UINT32 = 4
INT32 = 5
FLOAT32 = 6
BOOL = 7
STRING = 8
ARRAY = 9
UINT64 = 10
INT64 = 11
FLOAT64 = 12
#
# Begin LLAMA_API
#
class llama_vocab(ctypes.Structure):
"""Dummy `ctypes.Structure`"""
llama_vocab_p = ctypes.POINTER(llama_vocab)
"""Pointer to a llama_vocab struct"""
class llama_model(ctypes.Structure):
"""Dummy `ctypes.Structure`"""
llama_model_p = ctypes.POINTER(llama_model)
"""Pointer to a llama_model struct"""
class llama_context(ctypes.Structure):
"""Dummy `ctypes.Structure`"""
llama_context_p = ctypes.POINTER(llama_context)
"""Pointer to a llama_context struct"""
class llama_sampler(ctypes.Structure):
"""Dummy `ctypes.Structure`"""
llama_sampler_p = ctypes.POINTER(llama_context)
"""Pointer to a llama_sampler struct"""
size_t = ctypes.c_ulong
llama_pos = ctypes.c_int32
llama_token = ctypes.c_int32
llama_seq_id = ctypes.c_int32
#
# Constants
#
LLAMA_DEFAULT_SEED = 0xFFFFFFFF
LLAMA_TOKEN_NULL = -1
LLAMA_FILE_MAGIC_GGLA = 0x67676c61 # 'ggla'
LLAMA_FILE_MAGIC_GGSN = 0x6767736e # 'ggsn'
LLAMA_FILE_MAGIC_GGSQ = 0x67677371 # 'ggsq'
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
LLAMA_SESSION_VERSION = 9
LLAMA_STATE_SEQ_MAGIC = LLAMA_FILE_MAGIC_GGSQ
LLAMA_STATE_SEQ_VERSION = 2
#
# Enums
#
class LlamaVocabType(IntEnum):
LLAMA_VOCAB_TYPE_NONE = 0 # For models without vocab
LLAMA_VOCAB_TYPE_SPM = 1 # LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE = 2 # GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3 # BERT tokenizer based on WordPiece
LLAMA_VOCAB_TYPE_UGM = 4 # T5 tokenizer based on Unigram
LLAMA_VOCAB_TYPE_RWKV = 5 # RWKV tokenizer based on greedy tokenization
class LlamaVocabPreType(IntEnum):
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3
LLAMA_VOCAB_PRE_TYPE_FALCON = 4
LLAMA_VOCAB_PRE_TYPE_MPT = 5
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7
LLAMA_VOCAB_PRE_TYPE_REFACT = 8
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11
LLAMA_VOCAB_PRE_TYPE_OLMO = 12
LLAMA_VOCAB_PRE_TYPE_DBRX = 13
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14
LLAMA_VOCAB_PRE_TYPE_PORO = 15
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17
LLAMA_VOCAB_PRE_TYPE_VIKING = 18
LLAMA_VOCAB_PRE_TYPE_JAIS = 19
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27
class LlamaRopeType(IntEnum):
LLAMA_ROPE_TYPE_NONE = -1
LLAMA_ROPE_TYPE_NORM = 0
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION
class LlamaTokenType(IntEnum):
LLAMA_TOKEN_TYPE_UNDEFINED = 0
LLAMA_TOKEN_TYPE_NORMAL = 1
LLAMA_TOKEN_TYPE_UNKNOWN = 2
LLAMA_TOKEN_TYPE_CONTROL = 3
LLAMA_TOKEN_TYPE_USER_DEFINED = 4
LLAMA_TOKEN_TYPE_UNUSED = 5
LLAMA_TOKEN_TYPE_BYTE = 6
class LlamaTokenAttr(IntEnum):
LLAMA_TOKEN_ATTR_UNDEFINED = 0
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0
LLAMA_TOKEN_ATTR_UNUSED = 1 << 1
LLAMA_TOKEN_ATTR_NORMAL = 1 << 2
LLAMA_TOKEN_ATTR_CONTROL = 1 << 3 # SPECIAL?
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4
LLAMA_TOKEN_ATTR_BYTE = 1 << 5
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9
class LlamaFType(IntEnum): # model file types
LLAMA_FTYPE_ALL_F32 = 0
LLAMA_FTYPE_MOSTLY_F16 = 1 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q8_0 = 7 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_S = 24 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_S = 26 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_M = 27 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_S = 28 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_M = 29 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30 # except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_M = 31 # except 1d tensors
LLAMA_FTYPE_MOSTLY_BF16 = 32 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
LLAMA_FTYPE_MOSTLY_TQ1_0 = 36 # except 1d tensors
LLAMA_FTYPE_MOSTLY_TQ2_0 = 37 # except 1d tensors
LLAMA_FTYPE_GUESSED = 1024 # not specified in the model file
class LlamaRopeScalingType(IntEnum):
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1
LLAMA_ROPE_SCALING_TYPE_NONE = 0
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1
LLAMA_ROPE_SCALING_TYPE_YARN = 2
LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE
class LlamaPoolingType(IntEnum):
LLAMA_POOLING_TYPE_UNSPECIFIED = -1
LLAMA_POOLING_TYPE_NONE = 0
LLAMA_POOLING_TYPE_MEAN = 1
LLAMA_POOLING_TYPE_CLS = 2
LLAMA_POOLING_TYPE_LAST = 3
LLAMA_POOLING_TYPE_RANK = 4 # used by reranking models to attach the classification head to the graph
class LlamaAttentionType(IntEnum):
LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1
LLAMA_ATTENTION_TYPE_CAUSAL = 0
LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1
class LlamaSplitMode(IntEnum):
LLAMA_SPLIT_MODE_NONE = 0 # single GPU
LLAMA_SPLIT_MODE_LAYER = 1 # split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2 # split layers and KV across GPUs, use tensor parallelism if supported
class llama_token_data(ctypes.Structure):
_fields_ = [
("id", ctypes.c_int32), # token id
("logit", ctypes.c_float), # log-odds of the token
("p", ctypes.c_float), # probability of the token
]
llama_token_data_p = ctypes.POINTER(llama_token_data)
class llama_token_data_array(ctypes.Structure):
_fields_ = [
("data", ctypes.POINTER(llama_token_data)), # NOTE: this pointer can be modified by the samplers
("size", ctypes.c_size_t),
("selected", ctypes.c_int64), # this is the index in the data array (i.e. not the token id)
("sorted", ctypes.c_bool),
]
llama_token_data_array_p = ctypes.POINTER(llama_token_data_array)
class llama_batch(ctypes.Structure):
_fields_ = [
("n_tokens", ctypes.c_int32),
("token", ctypes.POINTER(llama_token)), # the token ids of the input (used when embd is NULL)
("embd", ctypes.POINTER(ctypes.c_float)), # token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
("pos", ctypes.POINTER(llama_pos)), # the positions of the respective token in the sequence
("n_seq_id", ctypes.POINTER(ctypes.c_int32)), # the sequence to which the respective token belongs
("seq_id", ctypes.POINTER(ctypes.POINTER(llama_seq_id))), # the sequence to which the respective token belongs
("logits", ctypes.POINTER(ctypes.c_int8)), # if zero, the logits (and/or the embeddings) for the respective token will not be output
]
llama_batch_p = ctypes.POINTER(llama_batch)
class llama_model_kv_override_type(ctypes.Union):
_fields_ = [
("val_i64", ctypes.c_int64),
("val_f64", ctypes.c_double),
("val_bool", ctypes.c_bool),
("val_str", ctypes.c_char * 128),
]
llama_model_kv_override_type_p = ctypes.POINTER(llama_model_kv_override_type)
class llama_model_kv_override(ctypes.Structure):
_fields_ = [
("tag", ctypes.c_int),
("key", ctypes.c_char * 128),
("val", llama_model_kv_override_type),
]
llama_model_kv_override_p = ctypes.POINTER(llama_model_kv_override)
dummy_progress_callback = ctypes.CFUNCTYPE(
ctypes.c_void_p, ctypes.c_float, ctypes.c_void_p
)
class llama_model_params(ctypes.Structure):
_fields_ = [
("devices", ctypes.POINTER(ctypes.c_void_p)),
("n_gpu_layers", ctypes.c_int32),
("split_mode", ctypes.c_int),
("main_gpu", ctypes.c_int32),
("tensor_split", ctypes.POINTER(ctypes.c_float)),
("rpc_servers", ctypes.c_char_p),
("progress_callback", dummy_progress_callback),
("progress_callback_user_data", ctypes.c_void_p),
("kv_overrides", ctypes.POINTER(llama_model_kv_override)),
("vocab_only", ctypes.c_bool),
("use_mmap", ctypes.c_bool),
("use_mlock", ctypes.c_bool),
("check_tensors", ctypes.c_bool),
]
llama_model_params_p = ctypes.POINTER(llama_model_params)
dummy_eval_callback = ctypes.CFUNCTYPE(
ctypes.c_void_p, ctypes.c_bool, ctypes.c_void_p
)
dummy_abort_callback = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_void_p)
class llama_context_params(ctypes.Structure):
_fields_ = [
("n_ctx", ctypes.c_uint32), # text context, 0 = from model
("n_batch", ctypes.c_uint32), # logical maximum batch size that can be submitted to llama_decode
("n_ubatch", ctypes.c_uint32), # physical maximum batch size
("n_seq_max", ctypes.c_uint32), # max number of sequences (i.e. distinct states for recurrent models)
("n_threads", ctypes.c_int32), # number of threads to use for generation
("n_threads_batch", ctypes.c_int32), # number of threads to use for batch processing
("rope_scaling_type", ctypes.c_int), # RoPE scaling type, from `enum llama_rope_scaling_type`
("pooling_type", ctypes.c_int), # whether to pool (sum) embedding results by sequence id
("attention_type", ctypes.c_int), # attention type to use for embeddings
("rope_freq_base", ctypes.c_float), # RoPE base frequency, 0 = from model
("rope_freq_scale", ctypes.c_float), # RoPE frequency scaling factor, 0 = from model
("yarn_ext_factor", ctypes.c_float), # YaRN extrapolation mix factor, negative = from model
("yarn_attn_factor", ctypes.c_float), # YaRN magnitude scaling factor
("yarn_beta_fast", ctypes.c_float), # YaRN low correction dim
("yarn_beta_slow", ctypes.c_float), # YaRN high correction dim
("yarn_orig_ctx", ctypes.c_uint32), # YaRN original context size
("defrag_thold", ctypes.c_float), # defragment the KV cache if holes/size > thold, < 0 disabled (default)
("cb_eval", dummy_eval_callback), # callback for eval
("cb_eval_user_data", ctypes.c_void_p), # user data for eval callback
("type_k", ctypes.c_int), # data type for K cache [EXPERIMENTAL]
("type_v", ctypes.c_int), # data type for V cache [EXPERIMENTAL]
("logits_all", ctypes.c_bool), # the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
("embeddings", ctypes.c_bool), # if true, extract embeddings (together with logits)
("offload_kqv", ctypes.c_bool), # whether to offload the KQV ops (including the KV cache) to GPU
("flash_attn", ctypes.c_bool), # whether to use flash attention [EXPERIMENTAL]
("no_perf", ctypes.c_bool), # whether to measure performance timings
("abort_callback", dummy_abort_callback), # callback for abort
("abort_callback_data", ctypes.c_void_p), # user data for abort callback
]
llama_context_params_p = ctypes.POINTER(llama_context_params)
class llama_model_quantize_params(ctypes.Structure):
_fields_ = [
("nthread", ctypes.c_int32), # number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
("ftype", ctypes.c_int), # quantize to this llama_ftype
("output_tensor_type", ctypes.c_int), # output tensor type
("token_embedding_type", ctypes.c_int), # token embeddings tensor type
("allow_requantize", ctypes.c_bool), # allow quantizing non-f32/f16 tensors
("quantize_output_tensor", ctypes.c_bool), # quantize output.weight
("only_copy", ctypes.c_bool), # only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
("pure", ctypes.c_bool), # quantize all tensors to the default type
("keep_split", ctypes.c_bool), # quantize to the same number of shards
("imatrix", ctypes.c_void_p), # pointer to importance matrix data
("kv_overrides", ctypes.c_void_p), # pointer to vector containing overrides
]
llama_model_quantize_params_p = ctypes.POINTER(llama_model_quantize_params)
class llama_logit_bias(ctypes.Structure):
_fields_ = [
("token", ctypes.c_int32),
("bias", ctypes.c_float),
]
llama_logit_bias_p = ctypes.POINTER(llama_logit_bias)
class llama_sampler_chain_params(ctypes.Structure):
_fields_ = [
("no_perf", ctypes.c_bool), # whether to measure performance timings
]
llama_sampler_chain_params_p = ctypes.POINTER(llama_sampler_chain_params)
class llama_chat_message(ctypes.Structure):
_fields_ = [
("role", ctypes.c_char_p),
("content", ctypes.c_char_p),
]
llama_chat_message_p = ctypes.POINTER(llama_chat_message)
class llama_adapter_lora(ctypes.Structure):
pass
llama_adapter_lora_p = ctypes.POINTER(llama_adapter_lora)
#
# Helpers for getting default parameters
#
libllama.llama_model_default_params.argtypes = []
libllama.llama_model_default_params.restype = llama_model_params
def llama_model_default_params() -> llama_model_params:
"""Get the default parameters for a llama model"""
return libllama.llama_model_default_params()
libllama.llama_context_default_params.argtypes = []
libllama.llama_context_default_params.restype = llama_context_params
def llama_context_default_params() -> llama_context_params:
"""Get the default parameters for a llama context"""
return libllama.llama_context_default_params()
libllama.llama_sampler_chain_default_params.argtypes = []
libllama.llama_sampler_chain_default_params.restype = llama_sampler_chain_params
def llama_sampler_chain_default_params() -> llama_sampler_chain_params:
"""Get the default parameters for a sampler chain"""
return libllama.llama_sampler_chain_default_params()
libllama.llama_model_quantize_default_params.argtypes = []
libllama.llama_model_quantize_default_params.restype = llama_model_quantize_params
def llama_model_quantize_default_params() -> llama_model_quantize_params:
"""Get the default parameters for model quantization"""
return libllama.llama_model_quantize_default_params()
#
# Setup and teardown
#
libllama.llama_backend_init.argtypes = []
libllama.llama_backend_init.restype = None
def llama_backend_init() -> None:
"""Initialize the llama + ggml backend"""
global _BACKEND_INIT
libllama.llama_backend_init()
_BACKEND_INIT = True
libllama.llama_backend_free.argtypes = []
libllama.llama_backend_free.restype = None
def llama_backend_free() -> None:
"""Free the llama + ggml backend
Call once at the end of the program - currently only used for MPI"""
global _BACKEND_INIT
libllama.llama_backend_free()
_BACKEND_INIT = False
libllama.llama_numa_init.argtypes = [ctypes.c_int]
libllama.llama_numa_init.restype = None
def llama_numa_init(numa: int) -> None:
"""Initialize NUMA optimizations globally"""
libllama.llama_numa_init(numa)
libllama.llama_attach_threadpool.argtypes = [llama_context_p, ctypes.c_void_p, ctypes.c_void_p]
libllama.llama_attach_threadpool.restype = None
def llama_attach_threadpool(ctx: llama_context, ggml_threadpool: ptr, threadpool_batch: ptr) -> None:
"""Attach a threadpool to a llama_context"""
libllama.llama_attach_threadpool(ctx, ggml_threadpool, threadpool_batch)
libllama.llama_detach_threadpool.argtypes = [llama_context_p]
libllama.llama_detach_threadpool.restype = None
def llama_detach_threadpool(ctx: llama_context) -> None:
"""Detach a threadpool from a llama_context"""
libllama.llama_detach_threadpool(ctx)
libllama.llama_model_load_from_file.argtypes = [ctypes.c_char_p, llama_model_params]
libllama.llama_model_load_from_file.restype = llama_model_p
def llama_model_load_from_file(path_model: str, params: llama_model_params) -> ptr[llama_model]:
"""Load a llama model from a file - returns a pointer"""
return libllama.llama_model_load_from_file(path_model.encode('utf-8'), params)
libllama.llama_model_free.argtypes = [llama_model_p]
libllama.llama_model_free.restype = None
def llama_model_free(model: llama_model) -> None:
"""Free a model"""
libllama.llama_model_free(model)
libllama.llama_init_from_model.argtypes = [llama_model_p, llama_context_params]
libllama.llama_init_from_model.restype = llama_context_p
def llama_init_from_model(model: llama_model, params: llama_context_params) -> ptr[llama_context]:
"""Create a new llama context with a loaded model"""
return libllama.llama_init_from_model(model, params)
libllama.llama_free.argtypes = [llama_context_p]
libllama.llama_free.restype = None
def llama_free(ctx: llama_context) -> None:
"""Frees all allocated memory"""
libllama.llama_free(ctx)
@DEPRECATED(new_func_name='llama_model_load_from_file')
def llama_load_model_from_file(*args):
pass
@DEPRECATED(new_func_name='llama_model_free')
def llama_free_model(*args) -> None:
pass
@DEPRECATED(new_func_name='llama_init_from_model')
def llama_new_context_with_model(*args):
pass
@DEPRECATED(new_func_name='llama_model_free')
def llama_free_model(*args):
pass
#
# Llama backend helper functions
#
libllama.llama_time_us.argtypes = []
libllama.llama_time_us.restype = ctypes.c_int
def llama_time_us() -> int:
"""Get the current time in microseconds"""
return libllama.llama_time_us()
libllama.llama_max_devices.argtypes = []
libllama.llama_max_devices.restype = ctypes.c_int
def llama_max_devices() -> int:
"""Get the maximum number of devices"""
return libllama.llama_max_devices()
libllama.llama_supports_mmap.argtypes = []
libllama.llama_supports_mmap.restype = ctypes.c_bool
def llama_supports_mmap() -> bool:
"""Check if mmap is supported"""
return libllama.llama_supports_mmap()
libllama.llama_supports_mlock.argtypes = []
libllama.llama_supports_mlock.restype = ctypes.c_bool
def llama_supports_mlock() -> bool:
"""Check if mlock is supported"""
return libllama.llama_supports_mlock()
libllama.llama_supports_gpu_offload.argtypes = []
libllama.llama_supports_gpu_offload.restype = ctypes.c_bool
def llama_supports_gpu_offload() -> bool:
"""Check if GPU offload is supported"""
return libllama.llama_supports_gpu_offload()
libllama.llama_supports_rpc.argtypes = []
libllama.llama_supports_rpc.restype = ctypes.c_bool
def llama_supports_rpc() -> bool:
"""Check if RPC is supported"""
return libllama.llama_supports_rpc()
libllama.llama_n_ctx.argtypes = [llama_context_p]
libllama.llama_n_ctx.restype = ctypes.c_int
#
# Getters for llama_context
#
def llama_n_ctx(ctx: llama_context) -> int:
"""Get the context size"""
return libllama.llama_n_ctx(ctx)
libllama.llama_n_batch.argtypes = [llama_context_p]
libllama.llama_n_batch.restype = ctypes.c_int
def llama_n_batch(ctx: llama_context) -> int:
"""Get the logical maximum batch size"""
return libllama.llama_n_batch(ctx)
libllama.llama_n_ubatch.argtypes = [llama_context_p]
libllama.llama_n_ubatch.restype = ctypes.c_int
def llama_n_ubatch(ctx: llama_context) -> int:
"""Get the physical maximum batch size"""
return libllama.llama_n_ubatch(ctx)
libllama.llama_n_seq_max.argtypes = [llama_context_p]
libllama.llama_n_seq_max.restype = ctypes.c_int
def llama_n_seq_max(ctx: llama_context) -> int:
"""Get the maximum number of sequences"""
return libllama.llama_n_seq_max(ctx)
libllama.llama_get_model.argtypes = [llama_context_p]
libllama.llama_get_model.restype = llama_model_p
def llama_get_model(ctx: llama_context) -> ptr[llama_model]:
"""Get the model associated with a context"""
return libllama.llama_get_model(ctx)
libllama.llama_pooling_type.argtypes = [llama_context_p]
libllama.llama_pooling_type.restype = ctypes.c_int
def llama_pooling_type(ctx: llama_context) -> int:
"""Get the pooling type used by a context"""
return libllama.llama_pooling_type(ctx)
#
# Getters for llama_model
#
libllama.llama_model_get_vocab.argtypes = [llama_model_p]
libllama.llama_model_get_vocab.restype = llama_vocab_p
def llama_model_get_vocab(model: llama_model) -> ptr[llama_vocab]:
"""Get a pointer to the llama_vocab struct"""
return libllama.llama_model_get_vocab(model)
libllama.llama_model_rope_type.argtypes = [llama_model_p]
libllama.llama_model_rope_type.restype = ctypes.c_int
def llama_model_rope_type(model: llama_model) -> int:
"""Get the RoPE type used by a model"""
return libllama.llama_model_rope_type(model)
libllama.llama_model_n_ctx_train.argtypes = [llama_model_p]
libllama.llama_model_n_ctx_train.restype = ctypes.c_int
def llama_model_n_ctx_train(model: llama_model) -> int:
"""Get the context size used during training"""
return libllama.llama_model_n_ctx_train(model)
libllama.llama_model_n_embd.argtypes = [llama_model_p]
libllama.llama_model_n_embd.restype = ctypes.c_int
def llama_model_n_embd(model: llama_model) -> int:
"""Get the embedding size"""
return libllama.llama_model_n_embd(model)
libllama.llama_model_n_layer.argtypes = [llama_model_p]
libllama.llama_model_n_layer.restype = ctypes.c_int
def llama_model_n_layer(model: llama_model) -> int:
"""Get the number of layers"""
return libllama.llama_model_n_layer(model)
libllama.llama_model_n_head.argtypes = [llama_model_p]
libllama.llama_model_n_head.restype = ctypes.c_int
def llama_model_n_head(model: llama_model) -> int:
"""Get the number of attention heads"""
return libllama.llama_model_n_head(model)
libllama.llama_model_rope_freq_scale_train.argtypes = [llama_model_p]
libllama.llama_model_rope_freq_scale_train.restype = ctypes.c_float
def llama_model_rope_freq_scale_train(model: llama_model) -> float:
"""Get the RoPE frequency scaling factor used during training"""
return libllama.llama_model_rope_freq_scale_train(model)
#
# Getters for llama_vocab
#
libllama.llama_vocab_type.argtypes = [llama_vocab_p]
libllama.llama_vocab_type.restype = ctypes.c_int
def llama_vocab_type(vocab: ptr[llama_vocab]) -> int:
"""Get the LlamaVocabType of this llama_vocab"""
return libllama.llama_vocab_type(vocab)
libllama.llama_vocab_n_tokens.argtypes = [llama_vocab_p]
libllama.llama_vocab_n_tokens.restype = ctypes.c_int
def llama_vocab_n_tokens(vocab: ptr[llama_vocab]) -> int:
"""Get the number of tokens in this llama_vocab"""
return libllama.llama_vocab_n_tokens(vocab)
#
# GGUF metadata functions
#
libllama.llama_model_meta_val_str.argtypes = [llama_model_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_int]
libllama.llama_model_meta_val_str.restype = ctypes.c_int
def llama_model_meta_val_str(model: llama_model, key: str, buf: ctypes.c_char_p, buf_size: int) -> int:
"""Get a metadata value as a string"""
return libllama.llama_model_meta_val_str(model, key.encode('utf-8'), buf, buf_size)
libllama.llama_model_meta_count.argtypes = [llama_model_p]
libllama.llama_model_meta_count.restype = ctypes.c_int
def llama_model_meta_count(model: llama_model) -> int:
"""Get the number of metadata key-value pairs"""
return libllama.llama_model_meta_count(model)
libllama.llama_model_meta_key_by_index.argtypes = [llama_model_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_int]
libllama.llama_model_meta_key_by_index.restype = ctypes.c_int
def llama_model_meta_key_by_index(model: llama_model, i: int, buf: ctypes.c_char_p, buf_size: int) -> int:
"""Get a metadata key by index"""
return libllama.llama_model_meta_key_by_index(model, i, buf, buf_size)
libllama.llama_model_meta_val_str_by_index.argtypes = [llama_model_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_int]
libllama.llama_model_meta_val_str_by_index.restype = ctypes.c_int
def llama_model_meta_val_str_by_index(model: llama_model, i: int, buf: ctypes.c_char_p, buf_size: int) -> int:
"""Get a metadata value by index"""
return libllama.llama_model_meta_val_str_by_index(model, i, buf, buf_size)
libllama.llama_model_desc.argtypes = [llama_model_p, ctypes.c_char_p, ctypes.c_int]
libllama.llama_model_desc.restype = ctypes.c_int
def llama_model_desc(model: llama_model, buf: ctypes.c_char_p, buf_size: int) -> int:
"""Get a string describing the model type"""
return libllama.llama_model_desc(model, buf, buf_size)
libllama.llama_model_size.argtypes = [llama_model_p]
libllama.llama_model_size.restype = size_t
def llama_model_size(model: llama_model) -> int:
"""Get the total size of all tensors in the model in bytes"""
return libllama.llama_model_size(model)
libllama.llama_model_chat_template.argtypes = [llama_model_p]
libllama.llama_model_chat_template.restype = ctypes.c_char_p
def llama_model_chat_template(model: ptr[llama_model]) -> ctypes.c_char_p:
"""Get the built-in chat template for this model. Returns NULL if not available."""
return libllama.llama_model_chat_template(model)
libllama.llama_model_n_params.argtypes = [llama_model_p]
libllama.llama_model_n_params.restype = size_t
def llama_model_n_params(model: llama_model) -> int:
"""Get the total number of parameters in the model"""
return libllama.llama_model_n_params(model)
libllama.llama_model_has_encoder.argtypes = [llama_model_p]
libllama.llama_model_has_encoder.restype = ctypes.c_bool
def llama_model_has_encoder(model: llama_model) -> bool:
"""Check if the model has an encoder"""
return libllama.llama_model_has_encoder(model)
libllama.llama_model_has_decoder.argtypes = [llama_model_p]
libllama.llama_model_has_decoder.restype = ctypes.c_bool
def llama_model_has_decoder(model: llama_model) -> bool:
"""Check if the model has a decoder"""
return libllama.llama_model_has_decoder(model)
libllama.llama_model_decoder_start_token.argtypes = [llama_model_p]
libllama.llama_model_decoder_start_token.restype = ctypes.c_int
def llama_model_decoder_start_token(model: llama_model) -> int:
"""Get the start token for the decoder"""
return libllama.llama_model_decoder_start_token(model)
libllama.llama_model_is_recurrent.argtypes = [llama_model_p]
libllama.llama_model_is_recurrent.restype = ctypes.c_bool
def llama_model_is_recurrent(model: llama_model) -> bool:
"""Check if the model is recurrent"""
return libllama.llama_model_is_recurrent(model)
@DEPRECATED(new_func_name='llama_model_n_ctx_train')
def llama_n_ctx_train(*args):
pass
@DEPRECATED(new_func_name='llama_model_n_embd')
def llama_n_embd(*args):
pass
@DEPRECATED(new_func_name='llama_model_n_layer')
def llama_n_layer(*args):
pass
@DEPRECATED(new_func_name='llama_model_n_head')
def llama_n_head(*args):
pass
@DEPRECATED(new_func_name='llama_vocab_n_tokens')
def llama_n_vocab(*args):
pass
@DEPRECATED(new_func_name='llama_model_rope_freq_scale_train')
def llama_rope_freq_scale_train(*args):
pass
#
# Quantization
#
libllama.llama_model_quantize.argtypes = [ctypes.c_char_p, ctypes.c_char_p, llama_model_quantize_params_p]
libllama.llama_model_quantize.restype = ctypes.c_int
def llama_model_quantize(fname_inp: str, fname_out: str, params: llama_model_quantize_params) -> int:
"""Quantize a model. Returns 0 on success"""
return libllama.llama_model_quantize(fname_inp.encode('utf-8'), fname_out.encode('utf-8'), ctypes.byref(params))
#
# Adapters
#
libllama.llama_adapter_lora_init.argtypes = [llama_model_p, ctypes.c_char_p]
libllama.llama_adapter_lora_init.restype = llama_adapter_lora_p
def llama_adapter_lora_init(model: llama_model, path_lora: str) -> ptr[llama_adapter_lora]:
"""Initialize a LoRA adapter"""
return libllama.llama_adapter_lora_init(model, path_lora.encode('utf-8'))
libllama.llama_set_adapter_lora.argtypes = [llama_context_p, llama_adapter_lora_p, ctypes.c_float]
libllama.llama_set_adapter_lora.restype = ctypes.c_int
def llama_adapter_lora_set(ctx: llama_context, adapter: llama_adapter_lora, scale: float) -> int:
"""Set a LoRA adapter for a context"""
return libllama.llama_set_adapter_lora(ctx, adapter, scale)
libllama.llama_rm_adapter_lora.argtypes = [llama_context_p, llama_adapter_lora_p]
libllama.llama_rm_adapter_lora.restype = ctypes.c_int
def llama_rm_adapter_lora(ctx: llama_context, adapter: llama_adapter_lora) -> int:
"""Remove a LoRA adapter from a context"""
return libllama.llama_rm_adapter_lora(ctx, adapter)
libllama.llama_clear_adapter_lora.argtypes = [llama_context_p]
libllama.llama_clear_adapter_lora.restype = None
def llama_clear_adapter_lora(ctx: llama_context) -> None:
"""Clear all LoRA adapters from a context"""
libllama.llama_clear_adapter_lora(ctx)
libllama.llama_adapter_lora_free.argtypes = [llama_adapter_lora_p]
libllama.llama_adapter_lora_free.restype = None
def llama_adapter_lora_free(adapter: llama_adapter_lora) -> None:
"""Free a LoRA adapter"""
libllama.llama_adapter_lora_free(adapter)
@DEPRECATED(new_func_name='llama_adapter_lora_init')
def llama_lora_adapter_init(*args):
pass
@DEPRECATED(new_func_name='llama_adapter_lora_set')
def llama_lora_adapter_set(*args):
pass
@DEPRECATED(new_func_name='llama_rm_adapter_lora')
def llama_lora_adapter_remove(*args):
pass
@DEPRECATED(new_func_name='llama_adapter_lora_clear')
def llama_lora_adapter_clear(*args):
pass
@DEPRECATED(new_func_name='llama_adapter_lora_free')
def llama_lora_adapter_free(*args):
pass
#
# Control vector
#
libllama.llama_apply_adapter_cvec.argtypes = [llama_context_p, ctypes.c_void_p, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int]
libllama.llama_apply_adapter_cvec.restype = ctypes.c_int
def llama_apply_adapter_cvec(ctx: llama_context, data: ctypes.c_void_p, len: int, n_embd: int, il_start: int, il_end: int) -> int:
"""Apply a control vector to a context"""
return libllama.llama_adapter_cvec_apply(ctx, data, len, n_embd, il_start, il_end)
@DEPRECATED(new_func_name='llama_apply_adapter_cvec')
def llama_control_vector_apply(*args):
pass
#
# KV cache
#
# // TODO: remove llama_kv_cache_view_* API
class llama_kv_cache_view_cell(ctypes.Structure):
_fields_ = [
("pos", ctypes.c_int32), # The position for this cell. Takes KV cache shifts into account.
]
llama_kv_cache_view_cell_p = ctypes.POINTER(llama_kv_cache_view_cell)
class llama_kv_cache_view(ctypes.Structure):
_fields_ = [
("n_cells", ctypes.c_int32), # Number of KV cache cells. This will be the same as the context size.
("n_seq_max", ctypes.c_int32), # Maximum number of sequences that can exist in a cell. It's not an error
("token_count", ctypes.c_int32), # Number of tokens in the cache. For example, if there are two populated
("used_cells", ctypes.c_int32), # Number of populated cache cells.
("max_contiguous", ctypes.c_int32), # Maximum contiguous empty slots in the cache.