-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
170 lines (138 loc) · 5.91 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Code for "Temporal Interlacing Network"
# Hao Shao, Shengju Qian, Yu Liu
# shaoh19@mails.tsinghua.edu.cn, sjqian@cse.cuhk.edu.hk, yuliu@ee.cuhk.edu.hk
import os
import time
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from torch.nn.utils import clip_grad_norm_
from ops.dataset import TSNDataSet
from ops.models import TSN
from ops.transforms import *
from opts import parser
from ops import dataset_config
from ops.utils import accuracy, save_bias
from ops.temporal_shift import make_temporal_pool
from utils import *
best_prec1 = 0
def main():
global args, best_prec1, TRAIN_SAMPLES
args = parser.parse_args()
num_class, args.train_list, args.val_list, args.test_list, args.root_path, prefix = dataset_config.return_dataset(args.dataset,
args.modality)
if os.path.exists(args.test_list):
args.val_list = args.test_list
model = TSN(num_class, args.num_segments, args.modality,
base_model=args.arch,
consensus_type=args.consensus_type,
dropout=args.dropout,
img_feature_dim=args.img_feature_dim,
partial_bn=not args.no_partialbn,
pretrain=args.pretrain,
is_shift=args.shift, shift_div=args.shift_div, shift_place=args.shift_place,
fc_lr5=not (args.tune_from and args.dataset in args.tune_from),
temporal_pool=args.temporal_pool,
non_local=args.non_local,
tin=args.tin)
crop_size = args.crop_size
scale_size = args.scale_size
input_mean = [0.485, 0.456, 0.406]
input_std = [0.229, 0.224, 0.225]
print(args.gpus)
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
if os.path.isfile(args.resume_path):
print(("=> loading checkpoint '{}'".format(args.resume_path)))
checkpoint = torch.load(args.resume_path)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'], strict=False)
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume_path)))
cudnn.benchmark = True
# Data loading code
if args.modality != 'RGBDiff':
normalize = GroupNormalize(input_mean, input_std)
else:
normalize = IdentityTransform()
if args.modality == 'RGB':
data_length = 1
elif args.modality in ['Flow', 'RGBDiff']:
data_length = 5
if args.random_crops == 1:
crop_aug = GroupCenterCrop(args.crop_size)
elif args.random_crops == 3:
crop_aug = GroupFullResSample(args.crop_size, args.scale_size, flip=False)
elif args.random_crops == 5:
crop_aug = GroupOverSample(args.crop_size, args.scale_size, flip=False)
else:
crop_aug = MultiGroupRandomCrop(args.crop_size, args.random_crops),
test_dataset = TSNDataSet(args.root_path, args.val_list, num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_tmpl=prefix,
multi_class=args.multi_class,
transform=torchvision.transforms.Compose([
GroupScale(int(args.scale_size)),
crop_aug,
Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize,
]), dense_sample=args.dense_sample,
test_mode=True,
temporal_clips=args.temporal_clips)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
test(test_loader, model, args.start_epoch)
def test(val_loader, model, epoch):
batch_time = AverageMeter(args.print_freq)
top1 = AverageMeter(args.print_freq)
top5 = AverageMeter(args.print_freq)
mAPs = AverageMeter(args.print_freq)
# switch to evaluate mode
model.eval()
dup_samples = args.random_crops * args.temporal_clips
end = time.time()
total_num = 0
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
if i % 50 ==0: print('Test Complete: %d / %d' % (i, len(val_loader)))
input = input.cuda()
target = target.cuda()
sizes = input.shape
input = input.view((sizes[0] * dup_samples, -1, sizes[2], sizes[3]))
# compute output
output = model(input)
sizes = output.shape
output = output.view((sizes[0] // dup_samples, -1, sizes[1]))
output = torch.nn.functional.softmax(output, 2)
output = torch.mean(output, 1)
num = input.size(0)
total_num += num
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.multi_class:
from ops.calculate_map import calculate_mAP
mAP = calculate_mAP(output.data, target)
mAPs.update(mAP, num)
else:
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
top1.update(prec1.item(), num)
top5.update(prec5.item(), num)
if args.multi_class:
final_mAP = mAPs.avg
output = (' * Map {:.3f}\t total_num={}'.format(final_mAP, total_num))
else:
output = (' * Prec@1 {:.3f}\t Prec@5 {:.3f}\ttotal_num={}'.format(top1.avg, top5.avg, total_num))
print(output)
if args.multi_class:
return mAPs.avg
else:
return top1.avg
if __name__ == '__main__':
main()