-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathconvert_text_to_opennmt_format.py
123 lines (98 loc) · 3.62 KB
/
convert_text_to_opennmt_format.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import json
import copy
from pycorenlp import StanfordCoreNLP
from sys import argv
nlp = StanfordCoreNLP('http://localhost:9000')
def convert_sents_to_opennmt(sents):
featured_sents = []
for sent in sents:
featured_source_tokens = []
for token in sent:
featured_source_token = "{}│{}│{}│{}│{}".format(
token['token'],
token['ans_tag'],
token['case_tag'],
token['pos_tag'],
token['ner']
)
featured_source_tokens.append(featured_source_token)
featured_sents.append(" ".join(featured_source_tokens))
return featured_sents
def copy_sent_with_one_ans(sent, begin_ind, end_ind):
new_sent = copy.deepcopy(sent)
for ind, token in enumerate(new_sent):
if ind < begin_ind or ind > end_ind:
token['ans_tag'] = 'O'
return new_sent
def separate_and_duplicate_ans_sents(sents):
new_sents = []
for sent in sents:
begin_ind, end_ind = None, None
for ind, token in enumerate(sent):
if token['ans_tag'] == 'B':
begin_ind = ind
elif token['ans_tag'] == 'I':
continue
else:
if begin_ind is not None:
end_ind = ind - 1
new_sent = copy_sent_with_one_ans(sent, begin_ind, end_ind)
begin_ind = None
new_sents.append(new_sent)
else:
begin_ind, end_ind = None, None
return new_sents
def get_possible_ans_tags(ner_features_path='data/ner_features'):
with open(ner_features_path, 'r') as f:
possible_ans_tags = [line.split('\t')[0] for line in f]
possible_ans_tags = [tag for tag in possible_ans_tags if tag != 'O']
possible_ans_tags.append('CD')
possible_ans_tags = set(possible_ans_tags)
return possible_ans_tags
def add_answers_tag(sents, possible_ans_tags):
for sent in sents:
ans_tag = 'O'
for token in sent:
if token['ner'] in possible_ans_tags or token['pos_tag'] in possible_ans_tags:
if ans_tag == 'B' or ans_tag == 'I':
ans_tag = 'I'
else:
ans_tag = 'B'
else:
ans_tag = 'O'
token['ans_tag'] = ans_tag
def get_featured_sents(corenlp_output):
sents = []
for sentence in corenlp_output['sentences']:
sent_start_ind = sentence['index']
sent = []
for token in sentence['tokens']:
token_start_ind = token['index']
word = token['originalText']
lower_word = word.lower()
if (word[0] == word[0].upper() and word[0] != word[0].lower()):
case_tag = 'UP'
else:
case_tag = 'LOW'
ner_tag = token['ner']
pos_tag = token['pos']
sent.append(({'token': lower_word, 'ner': ner_tag, 'case_tag': case_tag, 'pos_tag': pos_tag}))
sents.append(sent)
return sents
def main(text):
output = nlp.annotate(text, properties={
'annotators': 'tokenize,ssplit,pos,ner',
'outputFormat': 'json'}
)
if type(output) == str:
output =json.loads(output, encoding='utf-8', strict=False)
possible_ans_tags = get_possible_ans_tags()
sents = get_featured_sents(output)
add_answers_tag(sents, possible_ans_tags)
sents = separate_and_duplicate_ans_sents(sents)
opennmt_sents = convert_sents_to_opennmt(sents)
for sent in opennmt_sents:
print(sent)
if __name__ == '__main__':
text = argv[1]
main(text)