-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathdoc_classification_custom_optimizer.py
149 lines (123 loc) · 5.68 KB
/
doc_classification_custom_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# fmt: off
import logging
from pathlib import Path
from farm.data_handler.data_silo import DataSilo
from farm.data_handler.processor import TextClassificationProcessor
from farm.modeling.optimization import initialize_optimizer
from farm.infer import Inferencer
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.language_model import LanguageModel
from farm.modeling.prediction_head import TextClassificationHead
from farm.modeling.tokenization import Tokenizer
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings
def doc_classifcation():
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification")
##########################
########## Settings
##########################
set_all_seeds(seed=42)
n_epochs = 1
batch_size = 32
evaluate_every = 100
lang_model = "bert-base-german-cased"
do_lower_case = False
# or a local path:
# lang_model = Path("../saved_models/farm-bert-base-cased")
use_amp = None
#############################################
# CUSTOM OPTIMIZER & LR SCHEDULE
#############################################
# learning rate schedules from transformers
schedule_opts = {"name": "LinearWarmup", "warmup_proportion": 0.4}
# schedule_opts = {"name": "Constant"}
# schedule_opts = {"name": "CosineWarmup", "warmup_proportion": 0.4}
# schedule_opts = {"name": "CosineWarmupWithRestarts", "warmup_proportion": 0.4}
# or from native pytorch (see https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html for all options)
# schedule_opts = {"name": "StepLR", "step_size": 30, "gamma": 0.1}
# schedule_opts = {"name": "ReduceLROnPlateau", "mode": 'min', "factor": 0.1, "patience":10}
# optimizers from pytorch (see https://pytorch.org/docs/stable/optim.html for all options)
optimizer_opts = {"name": "SGD", "momentum": 0.0}
# or from apex (see https://github.com/NVIDIA/apex/tree/master/apex/optimizers for all options)
# optimizer_opts = {"name": "FusedLAMB", "bias_correction": True}
# or from transformers (default in FARM)
#optimizer_opts = {"name": "TransformersAdamW", "correct_bias": False, "weight_decay": 0.01}
#############################################
device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp)
# 1.Create a tokenizer
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model,
do_lower_case=do_lower_case)
# 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
# Here we load GermEval 2018 Data automaticaly if it is not available.
# GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv
label_list = ["OTHER", "OFFENSE"]
metric = "f1_macro"
processor = TextClassificationProcessor(tokenizer=tokenizer,
max_seq_len=128,
data_dir=Path("../data/germeval18"),
label_list=label_list,
metric=metric,
label_column_name="coarse_label"
)
# 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
# few descriptive statistics of our datasets
data_silo = DataSilo(
processor=processor,
batch_size=batch_size)
# 4. Create an AdaptiveModel
# a) which consists of a pretrained language model as a basis
language_model = LanguageModel.load(lang_model)
# b) and a prediction head on top that is suited for our task => Text classification
prediction_head = TextClassificationHead(
class_weights=data_silo.calculate_class_weights(task_name="text_classification"),
num_labels=len(label_list))
model = AdaptiveModel(
language_model=language_model,
prediction_heads=[prediction_head],
embeds_dropout_prob=0.1,
lm_output_types=["per_sequence"],
device=device)
# 5. Create an optimizer
model, optimizer, lr_schedule = initialize_optimizer(
model=model,
learning_rate=5e-3,
optimizer_opts=optimizer_opts,
schedule_opts=schedule_opts,
device=device,
n_batches=len(data_silo.loaders["train"]),
n_epochs=n_epochs,
use_amp=use_amp)
# 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
trainer = Trainer(
model=model,
optimizer=optimizer,
data_silo=data_silo,
epochs=n_epochs,
n_gpu=n_gpu,
lr_schedule=lr_schedule,
evaluate_every=evaluate_every,
device=device)
# 7. Let it grow
trainer.train()
# 8. Hooray! You have a model. Store it:
save_dir = Path("saved_models/bert-german-doc-tutorial")
model.save(save_dir)
processor.save(save_dir)
# 9. Load it & harvest your fruits (Inference)
basic_texts = [
{"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"},
{"text": "Martin Müller spielt Handball in Berlin"},
]
model = Inferencer.load(save_dir)
result = model.inference_from_dicts(dicts=basic_texts)
print(result)
model.close_multiprocessing_pool()
if __name__ == "__main__":
doc_classifcation()
# fmt: on