x86_32 | x86_64 | ARM32 | ARM64 | |
---|---|---|---|---|
Windows | YES | YES | YES | YES |
Linux | YES | YES | YES | YES |
Mac OS X | NO | YES | NO | NO |
OS | Supports CPU | Supports GPU | Notes |
---|---|---|---|
Windows 10 | YES | YES | Must use VS 2017 or the latest VS2015 |
Windows 10 Subsystem for Linux |
YES | NO | |
Ubuntu 16.x | YES | YES | Also supported on ARM32v7 (experimental) |
Ubuntu 17.x | YES | YES | |
Ubuntu 18.x | YES | YES | |
Fedora 23 | YES | YES | |
Fedora 24 | YES | YES | |
Fedora 25 | YES | YES | |
Fedora 26 | YES | YES | |
Fedora 27 | YES | YES | |
Fedora 28 | YES | NO | Cannot build GPU kernels but can run them |
- Red Hat Enterprise Linux and CentOS are not supported.
- GCC 4.x and below are not supported. If you are using GCC 7.0+, you'll need to upgrade eigen to a newer version before compiling ONNX Runtime.
OS/Compiler Matrix:
OS/Compiler | Supports VC | Supports GCC | Supports Clang |
---|---|---|---|
Windows 10 | YES | Not tested | planning |
Linux | NO | YES(gcc>=5.0) | YES |
ONNX Runtime python binding only supports Python 3.x. Please use python 3.5+.
- Checkout the source tree:
git clone --recursive https://github.com/Microsoft/onnxruntime cd onnxruntime
- Install cmake-3.11 or better from https://cmake.org/download/.
- (optional) Install protobuf 3.6.1 from source code (cmake/external/protobuf). CMake flag protobuf_BUILD_SHARED_LIBS must be turned off. After the installation, you should have the 'protoc' executable in your PATH.
- (optional) Install onnx from source code (cmake/external/onnx)
export ONNX_ML=1 python3 setup.py bdist_wheel pip3 install --upgrade dist/*.whl
- Run
./build.sh --config RelWithDebInfo --build_wheel
for Linux (orbuild.bat --config RelWithDebInfo --build_wheel
for Windows)
The build script runs all unit tests by default (for native builds and skips tests by default for cross-compiled builds).
The complete list of build options can be found by running ./build.sh (or ./build.bat) --help
Build Job Name | Environment | Dependency | Test Coverage | Scripts |
---|---|---|---|---|
Linux_CI_Dev | Ubuntu 16.04 | python=3.5 | Unit tests; ONNXModelZoo | script |
Linux_CI_GPU_Dev | Ubuntu 16.04 | python=3.5; nvidia-docker | Unit tests; ONNXModelZoo | script |
Windows_CI_Dev | Windows Server 2016 | python=3.5 | Unit tests; ONNXModelZoo | script |
Windows_CI_GPU_Dev | Windows Server 2016 | cuda=9.1; cudnn=7.1; python=3.5 | Unit tests; ONNXModelZoo | script |
The complete list of build flavors can be seen by running ./build.sh --help
or ./build.bat --help
. Here are some common flavors.
ONNX Runtime supports CUDA builds. You will need to download and install CUDA and CUDNN.
ONNX Runtime is built and tested with CUDA 9.1 and CUDNN 7.1 using the Visual Studio 2017 14.11 toolset (i.e. Visual Studio 2017 v15.3). CUDA versions from 9.1 up to 10.0, and CUDNN versions from 7.1 up to 7.4 should also work with Visual Studio 2017.
- The path to the CUDA installation must be provided via the CUDA_PATH environment variable, or the
--cuda_home parameter
. - The path to the CUDNN installation (include the
cuda
folder in the path) must be provided via the CUDNN_PATH environment variable, or--cudnn_home parameter
. The CUDNN path should containbin
,include
andlib
directories. - The path to the CUDNN bin directory must be added to the PATH environment variable so that cudnn64_7.dll is found.
You can build with:
./build.sh --use_cuda --cudnn_home /usr --cuda_home /usr/local/cuda (Linux)
./build.bat --use_cuda --cudnn_home <cudnn home path> --cuda_home <cuda home path> (Windows)
Depending on compatibility between the CUDA, CUDNN, and Visual Studio 2017 versions you are using, you may need to explicitly install an earlier version of the MSVC toolset.
- CUDA 10.0 is known to work with toolsets from 14.11 up to 14.16 (Visual Studio 2017 15.9), and should continue to work with future Visual Studio versions
- CUDA 9.2 is known to work with the 14.11 MSVC toolset (Visual Studio 15.3 and 15.4)
To install the 14.11 MSVC toolset, see https://blogs.msdn.microsoft.com/vcblog/2017/11/15/side-by-side-minor-version-msvc-toolsets-in-visual-studio-2017/
To use the 14.11 toolset with a later version of Visual Studio 2017 you have two options:
-
Setup the Visual Studio environment variables to point to the 14.11 toolset by running vcvarsall.bat, prior to running the build script
- e.g. if you have VS2017 Enterprise, an x64 build would use the following command
"C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" amd64 -vcvars_ver=14.11
- For convenience, build.amd64.1411.bat will do this and can be used in the same way as build.bat.
- e.g.
.\build.amd64.1411.bat --use_cuda
- e.g.
- e.g. if you have VS2017 Enterprise, an x64 build would use the following command
-
Alternatively if you have CMake 3.12 or later you can specify the toolset version via the
--msvc_toolset
build script parameter.- e.g.
.\build.bat --msvc_toolset 14.11
- e.g.
Side note: If you have multiple versions of CUDA installed on a Windows machine and are building with Visual Studio, CMake will use the build files for the highest version of CUDA it finds in the BuildCustomization folder.
e.g. C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\Common7\IDE\VC\VCTargets\BuildCustomizations.
If you want to build with an earlier version, you must temporarily remove the 'CUDA x.y.*' files for later versions from this directory.
To build ONNX Runtime with MKL-DNN support, build it with ./build.sh --use_mkldnn --use_mklml
ONNX Runtime supports the Tensort RT execution provider (released as preview). You will need to download and install CUDA, CUDNN and TensorRT.
The TensorRT execution provider for ONNX Runtime is built and tested with CUDA 9.0/CUDA 10.0, CUDNN 7.1 and TensorRT 5.0.2.6.
- The path to the CUDA installation must be provided via the CUDA_PATH environment variable, or the
--cuda_home parameter
. The CUDA path should containbin
,include
andlib
directories. - The path to the CUDA
bin
directory must be added to the PATH environment variable so thatnvcc
is found. - The path to the CUDNN installation (path to folder that contains libcudnn.so) must be provided via the CUDNN_PATH environment variable, or
--cudnn_home parameter
. - The path to TensorRT installation must be provided via the
--tensorrt_home parameter
.
You can build from source on Linux by using the following cmd
from the onnxruntime directory:
./build.sh --cudnn_home <path to CUDNN e.g. /usr/lib/x86_64-linux-gnu/> --cuda_home <path to folder for CUDA e.g. /usr/local/cuda> --use_tensorrt --tensorrt_home <path to TensorRT home> (Linux)
Instructions how to build OpenBLAS for windows can be found here https://github.com/xianyi/OpenBLAS/wiki/How-to-use-OpenBLAS-in-Microsoft-Visual-Studio#build-openblas-for-universal-windows-platform.
Once you have the OpenBLAS binaries, build ONNX Runtime with ./build.bat --use_openblas
For Linux (e.g. Ubuntu 16.04), install libopenblas-dev package
sudo apt-get install libopenblas-dev
and build with ./build.sh --use_openblas
./build.sh --use_openmp (for Linux)
./build.bat --use_openmp (for Windows)
Install Docker: https://docs.docker.com/install/
cd tools/ci_build/github/linux/docker
docker build -t onnxruntime_dev --build-arg OS_VERSION=16.04 -f Dockerfile.ubuntu .
docker run --rm -it onnxruntime_dev /bin/bash
If you need GPU support, please also install:
- nvidia driver. Before doing this please add
nomodeset rd.driver.blacklist=nouveau
to your linux kernel boot parameters. - nvidia-docker2: Install doc
To test if your nvidia-docker works:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Then build a docker image. We provided a sample for use:
cd tools/ci_build/github/linux/docker
docker build -t cuda_dev -f Dockerfile.ubuntu_gpu .
Then run it
./tools/ci_build/github/linux/run_dockerbuild.sh
We've experimental support for Linux ARM builds. Windows on ARM is well tested.
- Get the corresponding toolchain. For example, if your device is Raspberry Pi and the device os is Ubuntu 16.04, you may use gcc-linaro-6.3.1 from https://releases.linaro.org/components/toolchain/binaries
- Setup env vars
export PATH=/opt/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf/bin:$PATH export CC=arm-linux-gnueabihf-gcc export CXX=arm-linux-gnueabihf-g++
- Get a pre-compiled protoc: You may get it from https://github.com/protocolbuffers/protobuf/releases/download/v3.6.1/protoc-3.6.1-linux-x86_64.zip . Please unzip it after downloading.
- (optional) Setup sysroot for enabling python extension. (TODO: will add details later)
- Save the following content as tool.cmake
set(CMAKE_SYSTEM_NAME Linux) set(CMAKE_SYSTEM_PROCESSOR arm) set(CMAKE_CXX_COMPILER arm-linux-gnueabihf-c++) set(CMAKE_C_COMPILER arm-linux-gnueabihf-gcc) set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
- Append
-DONNX_CUSTOM_PROTOC_EXECUTABLE=/path/to/protoc -DCMAKE_TOOLCHAIN_FILE=path/to/tool.cmake
to your cmake args, run cmake and make to build it.
Please see ARM docker file. Docker build runs on a Raspberry Pi 3B with Raspbian Stretch Lite OS (Desktop version will run out memory when linking the .so file) will take 8-9 hours in total. If you want to use Azure Container Registry Tasks to build the Docker image in cloud, you may want to split this Dockerfile to two steps:
- Build environment image creation: steps before onnxruntime repo clone
- ONNX Runtime and Python binding creation: the rest of steps in the original Dockerfile with step 1 output as base image.
By doing this, you could avoid hit the ACR-Tasks build timeout (8 hours)
-
Download and install Visual C++ compilers and libraries for ARM(64). If you have Visual Studio installed, please use the Visual Studio Installer (look under the section
Individual components
after choosing tomodify
Visual Studio) to download and install the corresponding ARM(64) compilers and libraries. -
Use
build.bat
and specify--arm
or--arm64
as the build option to start building. Preferably useDeveloper Command Prompt for VS
or make sure all the installed cross-compilers are findable from the command prompt being used to build using the PATH environmant variable.
(TODO)