-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEntry.py
313 lines (280 loc) · 12.1 KB
/
Entry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
'''
Created on Sep 23, 2018
@author: g.werner
'''
import Config
from flask import Flask
from flask import request
import json
import pathlib
import spacy
import sys
from AylienSentiment import AylienSentiment
from CharLSTMSentiment import CharLSTMSentiment
from CompositeSentiment import CompositeSentiment
import FinanceSentiment
from GoogleCloudSentiment import GoogleCloudSentiment
from SpacySentiment import SentimentAnalyser
import SpacySentiment
from StanfordSentiment import StanfordSentiment
import TweepySentiment
import VaderSentiment
application = Flask(__name__)
# This line would accomplish lazy loading. But, according to GIT issue #2, we don't want it.
#application.before_first_request(init)
stanford_sentiment = StanfordSentiment()
google_sentiment = GoogleCloudSentiment()
aylien_sentiment = AylienSentiment()
char_lstm_sentiment = CharLSTMSentiment()
composite_sentiment = CompositeSentiment()
### Handle command line arguments ###
# dev (default), staging, production
env = sys.argv[1] if len(sys.argv) > 1 else 'dev'
if env == 'dev':
sent_config = Config.DevelopmentConfig()
else:
raise ValueError('Invalid environment name ' + env)
def init():
print('Loading Spacy Vectors')
global nlp, sa
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
nlp.add_pipe(SentimentAnalyser.load(pathlib.Path('model'), nlp, max_length=100))
init()
stanford_sentiment.config(sent_config)
google_sentiment.config()
aylien_sentiment.config()
char_lstm_sentiment.config(sent_config, stanford_sentiment.nlp)
@application.route("/spacy", methods = ['GET', 'POST'])
def get_spacy_sentiment():
if request.method == 'GET':
text = [request.args.get('texts')]
elif request.method == 'POST':
text = [request.form['texts']]
else:
return ('Unknown method!!!')
return str(compute_spacy_sentiment(text))
def compute_spacy_sentiment(text):
global nlp
return SpacySentiment.evaluate_without_labels(nlp, text)
@application.route("/vader", methods = ['GET', 'POST'])
def get_vader_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
elif request.method == 'POST':
text = request.form['texts']
else:
return ('Unknown method!!!')
return str(compute_vader_sentiment(text))
def compute_vader_sentiment(text):
return VaderSentiment.evaluate_single_document(text)
@application.route("/tweepy", methods = ['GET', 'POST'])
def get_tweepy_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
elif request.method == 'POST':
text = request.form['texts']
else:
return ('Unknown method!!!')
return str(compute_tweepy_sentiment(text))
def compute_tweepy_sentiment(text):
return TweepySentiment.evaluate_single_document(text)
@application.route("/finance", methods = ['GET', 'POST'])
def get_finance_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
elif request.method == 'POST':
text = request.form['texts']
else:
return 'Unknown method!'
(positive, negative) = compute_finance_sentiment(text)
return str(positive) + '\t' + str(negative)
def compute_finance_sentiment(text):
return FinanceSentiment.evaluate_single_document(text)
@application.route("/stanford", methods = ['GET', 'POST'])
def get_stanford_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
mode = request.args.get('mode')
elif request.method == 'POST':
text = request.form['texts']
mode = request.form['mode']
else:
return ('Unknown method!!!')
polarity = compute_stanford_sentiment(text, mode)
return json.dumps(polarity) if polarity is not None else "Stanford server is currently down. Please try again later!"
def compute_stanford_sentiment(text, mode):
return stanford_sentiment.evaluate_single_document(text, mode)
@application.route("/google", methods = ['GET', 'POST'])
def get_google_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
mode = request.args.get('mode')
elif request.method == 'POST':
text = request.form['texts']
mode = request.form['mode']
else:
return ('Unknown method!!!')
return json.dumps(compute_google_sentiment(text, mode))
def compute_google_sentiment(text, mode):
return google_sentiment.evaluate_single_document(text, mode)
@application.route("/aylien", methods = ['GET', 'POST'])
def get_aylien_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
mode = request.args.get('mode')
elif request.method == 'POST':
text = request.form['texts']
mode = request.form['mode']
else:
return ('Unknown method!!!')
return json.dumps(compute_aylien_sentiment(text, mode))
def compute_aylien_sentiment(text, mode):
return aylien_sentiment.evaluate_single_document(text, mode)
@application.route("/charlstm", methods = ['GET', 'POST'])
def get_char_lstm_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
mode = request.args.get('mode')
elif request.method == 'POST':
text = request.form['texts']
mode = request.form['mode']
else:
return ('Unknown method!!!')
result = compute_lstm_sentiment(text, mode)
return json.dumps(result)
def compute_lstm_sentiment(text, mode):
return char_lstm_sentiment.evaluate_single_document(text, mode)
@application.route("/composite", methods = ['GET', 'POST'])
# get combined score
def get_composite_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
preset = request.args.get('preset')
elif request.method == 'POST':
text = request.form['texts']
preset = request.form['preset']
(seven_scores, financial_scores, annotator_mode) = compute_composite_sentiment(text, preset)
return json.dumps(composite_blend(seven_scores, financial_scores, annotator_mode))
@application.route("/composite2", methods = ['GET', 'POST'])
# get individual value
def get_composite2_sentiment():
if request.method == 'GET':
text = request.args.get('texts')
preset = request.args.get('preset')
elif request.method == 'POST':
text = request.form['texts']
preset = request.form['preset']
(seven_scores, financial_scores, annotator_mode) = compute_composite_sentiment(text, preset)
to_return = seven_scores
to_return = {**to_return, **financial_scores}
return json.dumps(to_return)
def compute_composite_sentiment(text, preset = 'all'):
# preset is either a list of annotators or a shortcut repreresentation of a list of annotators
if preset == 'rule_based':
seven_scores = {}
# add the relevant annotators which given an answer in range [-1, 1]
seven_scores['vader'] = compute_vader_sentiment(text)
seven_scores['tweepy'] = compute_tweepy_sentiment(text)
# finally add the financial advice
financial_scores = {}
fs = compute_finance_sentiment(text)
financial_scores['finance_pos'] = fs[0]
financial_scores['finance_neg'] = fs[1]
return(seven_scores, financial_scores, 390)
elif preset == 'no_lstm':
seven_scores = {}
# add the seven annotators which given an answer in range [-1, 1]
seven_scores['spacy'] = compute_spacy_sentiment([text])
seven_scores['vader'] = compute_vader_sentiment(text)
seven_scores['tweepy'] = compute_tweepy_sentiment(text)
seven_scores['stanford'] = compute_stanford_sentiment(text)[0]
seven_scores['google'] = compute_google_sentiment(text)[0]
seven_scores['aylien'] = compute_aylien_sentiment(text)[0]
# finally add the financial advice
financial_scores = {}
fs = compute_finance_sentiment(text)
financial_scores['finance_pos'] = fs[0]
financial_scores['finance_neg'] = fs[1]
return(seven_scores, financial_scores, 447)
elif preset == 'tw_va_go':
seven_scores = {}
# add the seven annotators which given an answer in range [-1, 1]
seven_scores['vader'] = compute_vader_sentiment(text)
seven_scores['tweepy'] = compute_tweepy_sentiment(text)
seven_scores['google'] = compute_google_sentiment(text)[0]
# finally add the financial advice
financial_scores = {}
fs = compute_finance_sentiment(text)
financial_scores['finance_pos'] = fs[0]
financial_scores['finance_neg'] = fs[1]
return(seven_scores, financial_scores, 406)
elif preset == 'all':
seven_scores = {}
# add the seven annotators which given an answer in range [-1, 1]
seven_scores['spacy'] = compute_spacy_sentiment([text])
seven_scores['vader'] = compute_vader_sentiment(text)
seven_scores['tweepy'] = compute_tweepy_sentiment(text)
seven_scores['stanford'] = compute_stanford_sentiment(text)[0]
seven_scores['google'] = compute_google_sentiment(text)[0]
seven_scores['aylien'] = compute_aylien_sentiment(text)[0]
seven_scores['charlstm'] = compute_lstm_sentiment(text)[0]
# finally add the financial advice
financial_scores = {}
fs = compute_finance_sentiment(text)
financial_scores['finance_pos'] = fs[0]
financial_scores['finance_neg'] = fs[1]
return(seven_scores, financial_scores, 511)
else:
# the fallback assumes a list of annotators
chosen_annotators = set(preset.split(','))
seven_scores = {}
annotator_mode = 0
# add the seven annotators which given an answer in range [-1, 1]
if 'spacy' in chosen_annotators:
seven_scores['spacy'] = compute_spacy_sentiment([text])
annotator_mode += 1
if 'vader' in chosen_annotators:
seven_scores['vader'] = compute_vader_sentiment(text)
annotator_mode += 2
if 'tweepy' in chosen_annotators:
seven_scores['tweepy'] = compute_tweepy_sentiment(text)
annotator_mode += 4
if 'stanford' in chosen_annotators:
seven_scores['stanford'] = compute_stanford_sentiment(text)[0]
annotator_mode += 8
if 'google' in chosen_annotators:
seven_scores['google'] = compute_google_sentiment(text)[0]
annotator_mode += 16
if 'aylien' in chosen_annotators:
seven_scores['aylien'] = compute_aylien_sentiment(text)[0]
annotator_mode += 32
if 'charlstm' in chosen_annotators:
seven_scores['charlstm'] = compute_lstm_sentiment(text)[0]
annotator_mode += 64
# finally add the financial advice
financial_scores = {}
if 'finance_pos' in chosen_annotators or 'finance_neg' in chosen_annotators:
returned_value = compute_finance_sentiment(text)
if 'finance_pos' in chosen_annotators:
financial_scores['finance_pos'] = returned_value[0]
annotator_mode += 128
if 'finance_neg' in chosen_annotators:
financial_scores['finance_neg'] = returned_value[1]
annotator_mode += 256
return(seven_scores, financial_scores, annotator_mode)
def composite_blend(seven_scores, financial_scores, annotator_mode):
polarity = composite_sentiment.evaluate_single_document(seven_scores, financial_scores, annotator_mode)
return polarity
@application.route("/list", methods = ['GET'])
def get_endpoints():
return json.dumps([{'spacy':'Document based sentiment', 'vader':'Document based sentiment', 'tweepy':'Document based sentiment',
'finance':'Document based sentiment', 'stanford':'Document and Sentence based sentiment',
'google':'Document, sentence and entity based sentiment', 'aylien':'Document and Entity based sentiment',
'charlstm':'Document, sentence based sentiment', 'composite':'Document based sentiment',
'list':'List all endpoints', '':'Health Check'}])
@application.route("/")
def healthcheck():
return "Still alive"
if __name__ == '__main__':
application.run(port='8086', threaded=False)