-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathrun_mnist.py
271 lines (202 loc) · 7.68 KB
/
run_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""Run MNIST-rot"""
import argparse
import os
import random
import sys
import time
import urllib2
import zipfile
sys.path.append('../')
import numpy as np
import tensorflow as tf
from mnist_model import deep_mnist
def download2FileAndExtract(url, folder, fileName):
print('Downloading rotated MNIST...')
add_folder(folder)
zipFileName = folder + fileName
request = urllib2.urlopen(url)
with open(zipFileName, "wb") as f :
f.write(request.read())
if not zipfile.is_zipfile(zipFileName):
print('ERROR: ' + zipFileName + ' is not a valid zip file.')
sys.exit(1)
print('Extracting...')
wd = os.getcwd()
os.chdir(folder)
archive = zipfile.ZipFile('.'+fileName, mode='r')
archive.extractall()
archive.close()
os.chdir(wd)
print('Successfully retrieved rotated rotated MNIST dataset.')
def settings(args):
# Download MNIST if it doesn't exist
args.dataset = 'rotated_mnist'
if not os.path.exists(args.data_dir + '/mnist_rotation_new.zip'):
download2FileAndExtract("https://www.dropbox.com/s/0fxwai3h84dczh0/mnist_rotation_new.zip?dl=1",
args.data_dir, "/mnist_rotation_new.zip")
# Load dataset
mnist_dir = args.data_dir + '/mnist_rotation_new'
train = np.load(mnist_dir + '/rotated_train.npz')
valid = np.load(mnist_dir + '/rotated_valid.npz')
test = np.load(mnist_dir + '/rotated_test.npz')
data = {}
if args.combine_train_val:
data['train_x'] = np.vstack((train['x'], valid['x']))
data['train_y'] = np.hstack((train['y'], valid['y']))
else:
data['train_x'] = train['x']
data['train_y'] = train['y']
data['valid_x'] = valid['x']
data['valid_y'] = valid['y']
data['test_x'] = test['x']
data['test_y'] = test['y']
# Other options
if args.default_settings:
args.n_epochs = 200
args.batch_size = 46
args.learning_rate = 0.0076
args.std_mult = 0.7
args.delay = 12
args.phase_preconditioner = 7.8
args.filter_gain = 2
args.filter_size = 5
args.n_rings = 4
args.n_filters = 8
args.display_step = len(data['train_x'])/46
args.is_classification = True
args.dim = 28
args.crop_shape = 0
args.n_channels = 1
args.n_classes = 10
args.lr_div = 10.
args.log_path = add_folder('./logs')
args.checkpoint_path = add_folder('./checkpoints') + '/model.ckpt'
return args, data
def add_folder(folder_name):
if not os.path.exists(folder_name):
os.mkdir(folder_name)
print('Created {:s}'.format(folder_name))
return folder_name
def minibatcher(inputs, targets, batchsize, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
def get_learning_rate(args, current, best, counter, learning_rate):
"""If have not seen accuracy improvement in delay epochs, then divide
learning rate by 10
"""
if current > best:
best = current
counter = 0
elif counter > args.delay:
learning_rate = learning_rate / args.lr_div
counter = 0
else:
counter += 1
return (best, counter, learning_rate)
def main(args):
"""The magic happens here"""
tf.reset_default_graph()
##### SETUP AND LOAD DATA #####
args, data = settings(args)
##### BUILD MODEL #####
## Placeholders
x = tf.placeholder(tf.float32, [args.batch_size,784], name='x')
y = tf.placeholder(tf.int64, [args.batch_size], name='y')
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
train_phase = tf.placeholder(tf.bool, name='train_phase')
# Construct model and optimizer
pred = deep_mnist(args, x, train_phase)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=y))
# Evaluation criteria
correct_pred = tf.equal(tf.argmax(pred, 1), y)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Optimizer
optim = tf.train.AdamOptimizer(learning_rate=learning_rate)
grads_and_vars = optim.compute_gradients(loss)
modified_gvs = []
# We precondition the phases, for faster descent, in the same way as biases
for g, v in grads_and_vars:
if 'psi' in v.name:
g = args.phase_preconditioner*g
modified_gvs.append((g, v))
train_op = optim.apply_gradients(modified_gvs)
##### TRAIN ####
# Configure tensorflow session
init_global = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.log_device_placement = False
lr = args.learning_rate
saver = tf.train.Saver()
sess = tf.Session(config=config)
sess.run([init_global, init_local], feed_dict={train_phase : True})
start = time.time()
epoch = 0
step = 0.
counter = 0
best = 0.
print('Starting training loop...')
while epoch < args.n_epochs:
# Training steps
batcher = minibatcher(data['train_x'], data['train_y'], args.batch_size, shuffle=True)
train_loss = 0.
train_acc = 0.
for i, (X, Y) in enumerate(batcher):
feed_dict = {x: X, y: Y, learning_rate: lr, train_phase: True}
__, loss_, accuracy_ = sess.run([train_op, loss, accuracy], feed_dict=feed_dict)
train_loss += loss_
train_acc += accuracy_
sys.stdout.write('{:d}/{:d}\r'.format(i, data['train_x'].shape[0]/args.batch_size))
sys.stdout.flush()
train_loss /= (i+1.)
train_acc /= (i+1.)
if not args.combine_train_val:
batcher = minibatcher(data['valid_x'], data['valid_y'], args.batch_size)
valid_acc = 0.
for i, (X, Y) in enumerate(batcher):
feed_dict = {x: X, y: Y, train_phase: False}
accuracy_ = sess.run(accuracy, feed_dict=feed_dict)
valid_acc += accuracy_
sys.stdout.write('Validating\r')
sys.stdout.flush()
valid_acc /= (i+1.)
print('[{:04d} | {:0.1f}] Loss: {:04f}, Train Acc.: {:04f}, Validation Acc.: {:04f}, Learning rate: {:.2e}'.format(epoch,
time.time()-start, train_loss, train_acc, valid_acc, lr))
else:
print('[{:04d} | {:0.1f}] Loss: {:04f}, Train Acc.: {:04f}, Learning rate: {:.2e}'.format(epoch,
time.time()-start, train_loss, train_acc, lr))
# Save model
if epoch % 10 == 0:
saver.save(sess, args.checkpoint_path)
print('Model saved')
# Updates to the training scheme
#best, counter, lr = get_learning_rate(args, valid_acc, best, counter, lr)
lr = args.learning_rate * np.power(0.1, epoch / 50)
epoch += 1
# TEST
batcher = minibatcher(data['test_x'], data['test_y'], args.batch_size)
test_acc = 0.
for i, (X, Y) in enumerate(batcher):
feed_dict = {x: X, y: Y, train_phase: False}
accuracy_ = sess.run(accuracy, feed_dict=feed_dict)
test_acc += accuracy_
sys.stdout.write('Testing\r')
sys.stdout.flush()
test_acc /= (i+1.)
print('Test Acc.: {:04f}'.format(test_acc))
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", help="data directory", default='./data')
parser.add_argument("--default_settings", help="use default settings", type=bool, default=True)
parser.add_argument("--combine_train_val", help="combine the training and validation sets for testing", type=bool, default=False)
main(parser.parse_args())