-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdtft.m
152 lines (133 loc) · 3.68 KB
/
dtft.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function X = dtft(x, omega, varargin)
%function X = dtft(x, omega [,options])
%|
%| Compute d-dimensional DTFT of signal x at frequency locations omega
%|
%| in
%| x [(Nd) L] signal values
%| omega [M dd] frequency locations (radians), dd = numel(Nd)
%|
%| option
%| 'n_shift' [dd 1] use [0:N-1]-n_shift (default [0 .. 0])
%| 'how' 'outer' (default) big outer product
%| 'loop' reduce memory use (slower)
%| 'arrayfun' uses arrayfun()
%|
%| out
%| X [M L] DTFT values
%|
%| Requires enough memory to store M * prod(Nd) size matrices (for testing)
%|
%| Copyright 2001-9-17, Jeff Fessler, University of Michigan
%| 2013-03-22, Daniel Weller added arrayfun version and other improvements
%| 2013-03-27, JF converted to vararg
if nargin == 1 && streq(x, 'test'), dtft_test(0), return, end
if nargin == 1 && streq(x, 'time'), dtft_test(1), return, end
if nargin < 2, help(mfilename), error(mfilename), end
arg.n_shift = 0;
arg.how = 'outer';
arg = vararg_pair(arg, varargin);
dd = size(omega, 2);
Nd = size(x);
if numel(arg.n_shift) == 1
arg.n_shift = repmat(arg.n_shift, dd);
end
n_shift = arg.n_shift;
if numel(n_shift) ~= dd
fail 'n_shift size bad')
end
if dd == 1 && numel(Nd) == 2 && Nd(2) == 1 % 1D
Nd = Nd(1);
end
if length(Nd) == dd % just one image
x = x(:);
elseif length(Nd) == dd+1 % multiple images
Nd = Nd(1:(end-1));
x = reshapee(x, prod(Nd), []); % [*Nd L]
else
error 'bad input signal size'
end
% dsw alternative to the loop:
% nn = arrayfun(@(nd,nshift) (0:(nd-1))-nshift, Nd, n_shift, 'UniformOutput', false);
for id=1:dd
nn{id} = [0:(Nd(id)-1)] - n_shift(id);
end
% nn = ndgrid_jf('cell', nn);
if dd > 1
[nn{:}] = ndgrid(nn{:});
end
switch arg.how
case 'outer'
X = dtft_outer(x, omega, nn);
case 'loop'
X = dtft_loop(x, omega, Nd, nn);
case 'arrayfun'
X = dtft_arrayfun(x, omega, nn);
otherwise
fail('unknown how "%s"', arg.how)
end
% dtft_outer()
function X = dtft_outer(x, omega, nn);
X = 0;
dd = ncol(omega);
for id=1:dd % add up phases
X = X + omega(:,id) * col(nn{id})'; % [M *Nd]
end
X = exp(-1i*X) * x;
% dtft_loop()
% loop way: slower but less memory
function X = dtft_loop(x, omega, Nd, nn);
M = nrow(omega);
X = zeros(numel(x)/prod(Nd),M); % [L M]
%t1 = col(nn{1})';
if ncol(omega) > 3
fail 'only up to 3d done'
end
if ncol(omega) < 3
for dd = (ncol(omega)+1) : 3
nn{dd} = 0; % dummy 0's
end
omega(1,3) = 0; % trick: make '3d'
end
t1 = nn{1}(:)';
t2 = col(nn{2})';
t3 = col(nn{3})';
for mm=1:M
tmp = omega(mm,1)*t1 + omega(mm,2)*t2 + omega(mm,3)*t3;
X(:,mm) = exp(-1i * tmp) * x;
end
X = X.'; % [M L]
% dtft_arrayfun()
% by Dan Weller, 2013-03-27
function X = dtft_arrayfun(x, omega, nn);
nn = cellfun(@(x) col(x).',nn,'UniformOutput',false); % make row vectors
nn = cat(1,nn{:}); % [dd *Nd]
M = nrow(omega);
X = arrayfun(@(m) exp((-1i*omega(m,:)) * nn) * x, 1:M, 'UniformOutput', false); % each cell is [1 L]
X = cat(1,X{:}); % [M L]
% X = exp(-1i*(omega * nn)) * x; % [M L]
% dtft_test
% simple test
function dtft_test(do_time)
Nd = [4 6 5] * 2^(1+do_time);
n_shift = [1 3 2];
rng(0), x = randn(Nd); % test signal
o1 = 2*pi*[0:(Nd(1)-1)]'/Nd(1); % test with uniform frequency locations
o2 = 2*pi*[0:(Nd(2)-1)]'/Nd(2);
o3 = 2*pi*[0:(Nd(3)-1)]'/Nd(3);
[o1 o2 o3] = ndgrid(o1, o2, o3);
om = [o1(:) o2(:) o3(:)];
cpu etic
Xd = dtft(x, om, 'n_shift', n_shift);
cpu etoc outer
cpu etic
Xl = dtft(x, om, 'n_shift', n_shift, 'how', 'loop');
cpu etoc loop
cpu etic
Xa = dtft(x, om, 'n_shift', n_shift, 'how', 'arrayfun');
cpu etoc arrayfun
printm('loop max %% difference = %g', max_percent_diff(Xl,Xd))
printm('afun max %% difference = %g', max_percent_diff(Xa,Xd))
Xf = fftn(x);
Xf = Xf(:) .* exp(1i * (om * n_shift(:))); % phase shift
printm('fftn max %% difference = %g', max_percent_diff(Xf,Xd))