-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun_retroMoCoDemo_simulateMotion.m
executable file
·265 lines (224 loc) · 13.8 KB
/
run_retroMoCoDemo_simulateMotion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
% run_retroMoCoDemo_simulateMotion.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Whereas run_retroMoCoDemo.m uses real example data acquired with a pulse
% sequence with FatNavs inserted into it to demonstrate the
% motion-correction, this script uses the retroMoCoBox to simulate
% motion-corrupted data - and then see how well the corrupted k-space data
% can be fixed by applying the known translations and rotations.
%
% This can't be considered a 'full' simulation of the artifacts caused by
% motion - as it makes a number of simplifying assumptions - but it should
% give a good indication of the upper limit of the quality of a
% retrospective motion-correction when the motion-parameters are known
% precisely (which for any real acquisition they will not be - and for a
% FatNav acquisition the motion parameters will necessarily not correspond
% exactly in time to when the k-space data for the main sequence were
% acquired).
%
% It's probably easiest to run this script cell-by-cell so that you can
% keep track of what's going on. The default settings should demonstrate
% that even for quite considerable motion, the single-step retrospective
% correction can do a good job if the motion-parameters are known exactly.
%
% The script lets you experiment with various types of motion profiles -
% with simple models for swallowing artifacts and sudden jerky movements.
% You can also vary the 'baseline' noise. If you change this from the
% 'smoother' motion (default) to the '*really* rough motion' you should
% find that although the motion-corrected version is reasonably sharp,
% there is still quite a lot of residual ringing artifact. This residual
% ringing can be reduced considerably by an iterative version of the
% reconstruction - but this is *much* slower, so should only be attempted
% on a reasonably small test volume (easiest to achieve by uncommenting the
% line in the next cell which will extract just a thin slab in the z
% direction). The iterative reconstruction massively reduces the ringing
% artifact, but still leaves a small textural artifact. It is an ongoing
% area of research as to what extent the iterative reconstruction can be
% used on real data.
%
%
% Suggested ways to play around with this script:
%
% 1. Just run through the example as it is, and check what is
% happening at each stage.
%
% 2. Experiment with different motion profiles:
% - change the 'noiseBasePars' to the other commented lines to see
% generalised changes with overall noise pattern
% - look at the differences in correction when there are only
% translations or only rotations (you should find that pure translations
% are - in this simulation setting - perfectly reversible)
% - explore the kinds of image artifacts that arise due to different
% kinds of motion - parameters are already included for
% swallowing-like motion and random sudden movements
%
% 3. With the 'noiseBasePars' set to the *really* rough motion option, you
% will probably find that even the NUFFT reconstruction looks rather
% disappointing. This is because a complete correction requires an
% iterative approach, rather than a single application of the NUFFT
% adjoint operator.
% You can explore the improvement using an iterative NUFFT by first making
% sure that the volume you are working on is quite small (to keep the
% computation reasonably fast). I did this by extracting only a thin
% slab of the full 3D example volume. Then run through the whole script
% as it is - and then uncomment the iterative recon cell in this file
% and run that. It peforms 10 conjugate-gradient iterations and should
% give a much improved result.
%
% 4. A common concern people have regarding retrospective motion-correction
% is the handling of 'holes' in k-space which occur following sudden
% motion. This is easiest to simulate by uncommenting the lines in the
% cell generating the motion-parameters that will give one single large
% rotation.
% My interpretation of the result of this is that the retrospective
% reconstruction is remarkably robust to such a hole in k-space. If you
% uncomment the lines for comparing the k-spaces you can see both the
% hole this creates - as well as the source of error where data overlap.
% In this case, the iterative reconstruction is able to improve things
% slightly - reducing the artifact due to the overlapping k-space - but
% to 'fill-in' the hole would presumably require a reconstruction that
% makes use of k-space symmetry, or utilizes parallel imaging.
%
% 5. The single-step NUFFT adjoint operation can be improved if 'density
% compensation' is properly accounted for. When rotations have occurred in
% k-space and then been undone, the overlapping can be compensated for
% by scaling down and sparser sampled regions should be scaled down.
% Uncomment the density compensation cell to experiment with this.
% You should find that the single rotation tested in example 4 above can
% be well-compensated by simple density compensation. However, if you go
% back to the rough noise example, you will find that the density
% compensation does not work properly. This is presumably because
% calculating the 'real' density compensation function that should be
% used is a difficult problem in itself.
% In my experience of real data, applying density compensation in this
% way rarely makes a noticeably difference to the image - and in cases
% where there is residual image artifact following the NUFFT adjoint
% operation it is typically very difficult to estimate a reliable
% density compensation function. For this reason density compensation is
% currently omitted from the retroMoCoBox pipelines.
%
% -- Daniel Gallichan, gallichand@cardiff.ac.uk, August 2017
%% -- SET PATHS MANUALLY IN THIS SECTION --
run('addRetroMoCoBoxToPath.m')
% The NUFFT uses the Michigan Image Reconstruction Toolbox (MIRT)
% (http://web.eecs.umich.edu/~fessler/code/index.html)
% This is now included directly in retroMoCoBox/mirt_nufft
%%% Load in an example image:
%%% (The Colin27 brain is good for this - downloadable from here: http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27)
image_original = rn('../exampleData/colin27_t1_tal_lin.nii'); hostVoxDim_mm = [1 1 1];
% image_original = rn('/usr/local/fsl/data/standard/MNI152_T1_2mm.nii.gz'); hostVoxDim_mm = [2 2 2];
% force dimension to be even for simplicity of consitent indexing:
[nx,ny,nz] = size(image_original);
nx = 2*floor(nx/2); ny = 2*floor(ny/2); nz = 2*floor(nz/2);
image_original = image_original(1:nx,1:ny,1:nz);
% image_original = image_original(:,:,81:100); % <--- use only a subset of the data to be much faster
% normalize:
image_original = image_original / percentile(abs(image_original),95);
rawData = fft3s(image_original);
nT = size(rawData,2);
%% Generate the artificial motion parameters - the magnitude of different components can be varied by hand!
rng(1); % Set the seed for the random number generator to be able to create reproducible motion patterns
% for Perlin noise, this determines the weights between different harmonics of noise
% noiseBasePars = 1; %% *really* rough motion
% noiseBasePars = 5; %% quite 'rough' motion
noiseBasePars = 3.^[0:8]; %% smoother motion
maxDisp = 4; % magnitude of general background noise movement - translations
maxRot = 4; % magnitude of rotations
swallowFrequency = 3; % number of swallowing events in scan
swallowMagnitude = [3 3]; % first is translations, second is rotations
suddenFrequency = 5; % number of sudden movements
suddenMagnitude = [3 3]; % first is translations, second is rotations
% general background noise movement:
fitpars = zeros(6,nT);
fitpars(1,:) = maxDisp*(perlinNoise1D(nT,noiseBasePars).'-.5);
fitpars(2,:) = maxDisp*(perlinNoise1D(nT,noiseBasePars).'-.5);
fitpars(3,:) = maxDisp*(perlinNoise1D(nT,noiseBasePars).'-.5);
fitpars(4,:) = maxRot*(perlinNoise1D(nT,noiseBasePars).'-.5);
fitpars(5,:) = maxRot*(perlinNoise1D(nT,noiseBasePars).'-.5);
fitpars(6,:) = maxRot*(perlinNoise1D(nT,noiseBasePars).'-.5);
% add in swallowing-like movements - just to z direction and pitch:
swallowTraceBase = exp(-linspace(0,1e2,nT));
swallowTrace = zeros(1,nT);
for iS = 1:swallowFrequency
swallowTrace = swallowTrace + circshift(swallowTraceBase,[0 round(rand*nT)]);
end
fitpars(3,:) = fitpars(3,:) + swallowMagnitude(1)*swallowTrace;
fitpars(4,:) = fitpars(4,:) + swallowMagnitude(2)*swallowTrace;
% add in random sudden movements in any direction:
suddenTrace = zeros(size(fitpars));
for iS = 1:suddenFrequency
iT_sudden = ceil(rand*nT);
suddenTrace(:,iT_sudden:end) = bsxfun(@plus,suddenTrace(:,iT_sudden:end),[suddenMagnitude(1)*((2*rand(3,1))-1); suddenMagnitude(2)*((2*rand(3,1))-1)]);
end
fitpars = fitpars+suddenTrace;
%%% uncomment these lines to just have one big rotation
% fitpars = zeros(size(fitpars));
% fitpars(6,1:100) = 15;
%%% <-- single rotation only
fitpars = bsxfun(@minus,fitpars,fitpars(:,round(nT/2)));
figure(1)
clf
subplot1(2,1,'Gap',[0 .09],'Max',[.95 1])
s1 = subplot1(1); s2 = subplot1(2);
plotFitPars(fitpars,[],[],[],[s1 s2]);
%% Simulate the effect of that motion
% convert the motion parameters into a set off affine matrices:
fitMats = euler2rmat(fitpars(4:6,:));
fitMats(1:3,4,:) = fitpars(1:3,:);
% set some things for the recon function:
alignDim = 2; alignIndices = 1:nT; Hxyz = size(rawData); kspaceCentre_xyz = floor(Hxyz/2)+1;
% use the recon function just to extract the nufft 'object' st:
[~, st] = applyRetroMC_nufft(rawData,fitMats,alignDim,alignIndices,11,hostVoxDim_mm,Hxyz,kspaceCentre_xyz,-1);
% and use the nufft rather than the nufft_adj function to simulate the rotations:
image_simRotOnly = ifft3s(reshape(nufft(ifft3s(rawData),st),size(rawData)));
% then apply just the translations:
[~,~,image_simMotion] = applyRetroMC_nufft(fft3s(image_simRotOnly),fitMats,alignDim,alignIndices,11,hostVoxDim_mm,Hxyz,kspaceCentre_xyz,-1);
image_simMotion = ifft3s(image_simMotion);
image_simMotion = image_simMotion / percentile(abs(image_simMotion),95);
% Load both images in a 3D viewer:
SliceBrowser2(cat(4,abs(image_original),abs(image_simMotion)),[0 1.5],{'Original image','Simulated motion'})
set(gcf,'Name','Original image (1) vs Simulated Motion (2)')
%% And how well can this motion be 'undone' again...?
kdata_simMotion = fft3s(image_simMotion);
fitMats_undo = euler2rmat(fitpars(4:6,:)); % keep rotations in the same direction (this will be taken care of in nufft vs nufft_adj)
fitMats_undo(1:3,4,:) = -fitpars(1:3,:); % swap direction of translations
image_simMoco = applyRetroMC_nufft(kdata_simMotion,fitMats_undo,alignDim,alignIndices,11,hostVoxDim_mm,Hxyz,kspaceCentre_xyz);
image_simMoco = image_simMoco / percentile(abs(image_simMoco),95);
SliceBrowser2(cat(4,abs(image_simMotion),abs(image_simMoco)),[0 1.5],{'Simulated Motion','Simulated Motion-correction'})
set(gcf,'Name','Simulated Motion (1) vs Simulated Motion-correction (2)')
% %%% Compare the k-spaces:
% SliceBrowser2(log(cat(4,abs(fft3s(image_original)),abs(fft3s(image_simMotion)),abs(fft3s(image_simMoco)))+1),[],{'Original data','Simulated motion','Simulated motion-correction'})
% set(gcf,'Name','Compare k-spaces')
%% Try doing iterative motion-correction (slow on big volumes! - only do this on a sub-sampled dataset or a low-res volume (2mm or less))
% tic
% nCGIters = 10; % not sure what the magic number is here...
% image_simMocoIter = applyRetroMC_nufft(kdata_simMotion,fitMats_undo,alignDim,alignIndices,11,hostVoxDim_mm,Hxyz,kspaceCentre_xyz,nCGIters);
% toc
% image_simMocoIter = image_simMocoIter / percentile(abs(image_simMocoIter),95);
% SliceBrowser2(cat(4,abs(image_simMoco),abs(image_simMocoIter),abs(image_original)),[0 1.5],{'MoCo single NUFFT','MoCo iterative NUFFT','Original Image'})
% set(gcf,'Name','Simulated Motion-correction (1) vs Simulated Motion-correction + DC (2) vs Iterative simulated Motion-correction (3) vs Original Image (4)')
%
% % %%% Compare the k-spaces:
% % SliceBrowser2(log(cat(4,abs(fft3s(image_simMoco)),abs(fft3s(image_simMocoIter)),abs(fft3s(image_original)))+1),[],{'MoCo single NUFFT','MoCo iterative NUFFT','Original Image'})
% % set(gcf,'Name','Compare k-spaces')
%% Experiment with density-compensation functions
% %%% approximate the density compensation required by correcting a fake
% %%% k-space consisting only of ones
% testDC = fft3s(applyRetroMC_nufft(ones(size(kdata_simMotion)),fitMats_undo,alignDim,alignIndices,11,hostVoxDim_mm,Hxyz,kspaceCentre_xyz));
% testDC = 1./(abs(testDC)/nx/ny/nz);
% testDC(testDC>10) = 10; % threshold the density compensation - the level for this is arbitrary...
% image_simMocoDC = ifft3s( fft3s(image_simMoco).*testDC );
% image_simMocoDC = image_simMocoDC / percentile(abs(image_simMocoDC),95);
%
% SliceBrowser2(cat(4,abs(image_simMoco),abs(image_simMocoDC)),[0 1.5],{'Simulated Motion-correction','Simulated Motion-correction + DC'})
% set(gcf,'Name','Simulated Motion-correction (1) vs Simulated Motion-correction + DC (2)')
%
% %%% Compare the k-spaces:
% SliceBrowser2(log(cat(4,abs(fft3s(image_original)),abs(fft3s(image_simMotion)),abs(fft3s(image_simMoco)),abs(fft3s(image_simMocoDC)))+1),[],{'Original data','Simulated motion','Simulated motion-correction','Simulated motion-correction + DC'})
% set(gcf,'Name','Compare k-spaces')
%
% % % %%% Comparison with iterative recon as well:
% % % SliceBrowser2(cat(4,abs(image_simMoco),abs(image_simMocoDC),abs(image_simMocoIter),abs(image_original)),[0 1.5],{'MoCo single NUFFT','MoCo single NUFFT + DC','MoCo iterative NUFFT','Original Image'})
% % % set(gcf,'Name','Simulated Motion-correction (1) vs Simulated Motion-correction + DC (2) vs Iterative simulated Motion-correction (3) vs Original Image (4)')
% % % SliceBrowser2(log(cat(4,abs(fft3s(image_simMoco)),abs(fft3s(image_simMocoDC)),abs(fft3s(image_simMocoIter)),abs(fft3s(image_original)))+1),[],{'MoCo single NUFFT','MoCo single NUFFT + DC','MoCo iterative NUFFT','Original Image'})
% % % set(gcf,'Name','Compare k-spaces')