-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathols.R
300 lines (258 loc) · 10.5 KB
/
ols.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#====================================================================#
# Author: Damian Gwozdz (DG)
# Function: ols
# Creation date: 15JUN2017
# Last modified: 14MAY2018
# Description: Function to build an Ordinary
# Least Squares models and test it
# Required functions: PRESS, pred_r_squared
#
# Utilized tests:
# 1) Breusch-Pagan (heteroscedasticity)
# 2) Breusch-Godfrey (serial autocorrelation)
# 3) RESET
# 4) Anderson-Darling (normality of error distribution)
# 5) Shapiro-Wilk (normality of error distribution)
# 6) Chow test (time-series stability)
#
# Visualizations:
# 1) Predicted vs. Observed
#
#====================================================================#
library(lmtest)
# install.packages("nortest")
library(nortest) # Anderson-Darling test
library(car) # VIF
library(caret) # RMSE
library(scales) # percent() function
library(plotly) # interactive predicted vs. observed plot
# install.packages("strucchange")
library(strucchange) # chow test
# install.packages("lubridate")
library(lubridate)
ols <- function(dset, target, vars, alpha = .05, intercept = TRUE,
visualize = FALSE, output.residuals = FALSE,
time.series = FALSE, time.var = NULL,
pred.R2 = FALSE){
#====================================================================
# PARAMETERS:
#
# 1) dset - input data set
# 2) target - target variable declared as a string
# 3) vars - independent variables declared as a string
# with blanks as separators
# 4) alpha - significance level
# 5) intercept - a boolean value indicating whether the built model
# should have an intercept
# 6) visualize - a boolean value indicating whether the built model
# should be visualized (plot: predicted vs. observed)
# 7) output.residuals - a boolean value indicating whether the error
# term should be saved
# 8) time.series - a boolean value indicating the name of the variable
# which indicates time
# 9) time.var - variable identifying time
# 10) pred.R2 - a boolean value indicating whether predicted R-squared
# should be computed; this option is turned off by
# default due to computation time
#====================================================================
## parameters
# dset <- iris
# target <- "Sepal.Length"
# vars <- "Sepal.Width"
# time.var <- NULL
# dset <- EuStockMarkets
# target <- "DAX"
# vars <- "FTSE CAC"
# alpha <- .05
# intercept <- T
# visualize <- F
# output.residuals <- T
# time.series <- F
# time.var <- NULL
# pred.R2 <- FALSE
# dset <- EuStockMarkets2
# If a ts object is declared as an input data set, transform it
# to a data frame
if(sum(class(dset) == "ts")>0){
dset <- data.frame(as.matrix(dset),
date.custom=as.yearmon(time(dset)))
}else if(length(time.var)>0 & class(dset[, time.var]) != "Date"){
dset$date.custom <- date_decimal(dset[,time.var])
}
# else{
# stop("Declared data set is not an object of class 'ts' or
# the time variable was not declared")
# }
vars.split <- unlist(strsplit(vars, " "))
nvars <- if(intercept){length(vars.split)+1}else{length(vars.split)}
if(time.series){
dset <- dset[,c(target, vars.split, "date.custom")]
}else if(!is.null(time.var)){
dset <- dset[,c(target, vars.split, time.var)]
}else{
dset <- dset[,c(target, vars.split)]
}
# Only rows without missing data
dset <- dset[complete.cases(dset),]
intercept.string <- if(intercept){""}else{"-1"}
ols.formula <- as.formula(paste0(target, "~", gsub(" ", "+", vars), intercept.string))
model.original <- lm(formula = ols.formula, data = dset)
model <- summary(model.original)
# Model stats
model.stats <- data.frame(target = NA, vars = NA, R2 = NA,
adjusted.R2 = NA, RMSE = NA,
pred.R2 = NA, AIC = NA, BIC = NA,
F.stat = NA, F.p.value = NA,
bp.stat = NA, bp.p.value = NA, bg.stat = NA,
bg.p.value = NA, reset.stat = NA,
reset.p.value = NA, ad.stat = NA, ad.p.value = NA,
sw.stat = NA, sw.p.value = NA,
chow.stat = NA, chow.p.value = NA,
significance = NA, max.p.value = NA,
max.vif = NA,
tests = NA, n = NA, equation = NA)
if(intercept == FALSE){
model.stats$bp.stat <- NULL
model.stats$bp.p.value <- NULL
}
model.stats$target <- target
model.stats$vars <- vars
model.stats$R2 <- model$r.squared
model.stats$adjusted.R2 <- model$adj.r.squared
model.stats$RMSE <- RMSE(predict(model.original),
# both: target and predicted value must be available to
# reliably compute RMSE
dset[apply(dset, 1, function(x) !sum(is.na(x))),
c(target, vars.split)])
# Predicted R-Squared
if(pred.R2){
PRESS.stat <- PRESS(dset, target, vars.split, intercept)
model.stats$pred.R2 <- pred_r_squared(PRESS.stat, model.original)
}else{
model.stats$pred.R2 <- NULL
}
# AIC, BIC
model.stats$AIC <- AIC(model.original)
model.stats$BIC <- BIC(model.original)
# F stat
model.stats$F.stat <- model$fstatistic["value"]
model.stats$F.p.value <- pf(model$fstatistic[1], model$fstatistic[2],
model$fstatistic[3], lower=FALSE)
# Model tests
if(intercept){
breusch.pagan <- bptest(model)
model.stats$bp.stat <- breusch.pagan$statistic
model.stats$bp.p.value <- breusch.pagan$p.value
}
breusch.godfrey <- bgtest(model)
model.stats$bg.stat <- breusch.godfrey$statistic
model.stats$bg.p.value <- breusch.godfrey$p.value
reset <- resettest(model)
model.stats$reset.stat <- reset$statistic
model.stats$reset.p.value <- reset$p.value
anderson.darling <- ad.test(model$residuals)
model.stats$ad.stat <- anderson.darling$statistic
model.stats$ad.p.value <- anderson.darling$p.value
shapiro.wilk <- shapiro.test(model$residuals)
model.stats$sw.stat <- shapiro.wilk$statistic
model.stats$sw.p.value <- shapiro.wilk$p.value
chow <- sctest(ols.formula, type = "Chow", data = dset)
model.stats$chow.stat <- chow$statistic
model.stats$chow.p.value <- chow$p.value
# Variable stats & tests
model.vars <- data.frame(var = rownames(model$coefficients),
coef = model$coefficients[,"Estimate"],
p.value = model$coefficients[,4], vif = rep(NA, nvars))
if(length(vars.split) == 1){
if(intercept){
model.vars$vif <- c(rep(NA, 2))
}else{
model.vars$vif <- NA
}
}else{
if(intercept){
model.vars$vif <- c(NA, car::vif(model.original))
}else{
model.vars$vif <- car::vif(model.original)
}
}
model.stats$significance <- if(max(model.vars$p.value<=alpha)) TRUE else FALSE
model.stats$max.p.value <- max(model.vars$p.value)
model.stats$max.vif <- if(length(vars.split) == 1)NA else max(model.vars$vif,
na.rm = TRUE)
if(intercept){
model.stats$tests <- if(model.stats$bp.p.value>alpha &
model.stats$bg.p.value>alpha &
model.stats$reset.p.value>alpha &
model.stats$ad.p.value>alpha &
model.stats$sw.p.value>alpha &
model.stats$chow.p.value>alpha)T else F
}else{
model.stats$tests <- if(model.stats$bg.p.value>alpha &
model.stats$reset.p.value>alpha &
model.stats$ad.p.value>alpha &
model.stats$sw.p.value>alpha &
model.stats$chow.p.value>alpha)TRUE else FALSE
}
model.stats$n <- nrow(dset)
model.stats$equation <- paste0(paste0(as.character(model.vars$var), sep = "*"),
paste0("(", model.vars$coef , ")"), collapse = "+")
if(visualize){
dset$predicted <- predict(model.original, dset)
if(time.series | length(time.var)>0){
model.plot <- ggplot(dset, aes_string(x="predicted", y=target)) +
geom_point(shape=19, color = "purple") +
xlab("Predicted") +
ylab("Observed") +
ggtitle(paste0(target, ": Predicted vs Observed, Adj. R2=",
percent(model.stats$adjusted.R2))) +
theme_minimal()
}
if(time.series){
time.series.plot <- ggplot() +
geom_line(data = dset, aes_string(x="date.custom", y=target,
col = "target")) +
geom_line(data = dset, aes(x=date.custom, y=predicted,
col = paste0("predicted ", target))) +
xlab("Time") +
ylab(target) +
ggtitle(paste0(target, ": Predicted vs Observed")) +
labs(color = "") +
theme_minimal()
}else if(length(time.var)>0){
dset_ggplot <- reshape2::melt(dset[,c(target, "predicted", time.var)],
id = time.var)
time.series.plot <- ggplot(data=dset_ggplot,
aes_string(x = time.var, y = "value",
colour = "variable", group = "variable")) +
geom_line() +
xlab("Time") +
ylab(target) +
ggtitle(paste0(target, ": Predicted vs Observed")) +
labs(color = "") +
theme_minimal()
}else{
# dset$predicted <- predict(model.original, dset)
model.plot <- ggplot(dset, aes_string(x="predicted", y=target)) +
geom_point(shape=19, color = "purple") +
xlab("Predicted") +
ylab("Observed") +
ggtitle(paste0(target, ": Predicted vs Observed, Adj. R2=",
percent(model.stats$adjusted.R2))) +
theme_minimal()
# print(model.plot)
time.series.plot<- NULL
}
}else{
model.plot <- NULL
time.series.plot<- NULL
}
if(output.residuals){
model.errors <- model$residuals
}else{
model.errors <- NULL
}
return(list(stats = model.stats, var.stats = model.vars, plot = model.plot,
output.residuals = model.errors,
time.plot = time.series.plot))
}